A CHARACTERIZATION OF THE CLOSABLE PARTS OF PRE-DIRICHLET FORMS BY HITTING DISTRIBUTIONS

KAZUHIRO KUWAE

(Received October 15, 1991)

1. Introduction

Let X be a locally compact separable metric space with an extra point Δ such that $X_{\Delta} \equiv X \cup \{\Delta\}$ is a one point compactification and let *m* be a positive Radon measure with supp [m] = X. When X is compact, Δ is adjoined as an isolated point. For a subset B of X, we denote $B_{\Delta} = B \cup \{\Delta\}$. We consider a C_0 -regular Dirichlet space $(\mathcal{E}, \mathcal{F})$ on $L^2(X, m)$ having a nice core \mathcal{C} (see Section 2) and $M = (\Omega, \mathcal{F}_t, X_t, P_x, x \in X)$ the associated *m*-symmetric Hunt process. We say that a subset B of X is \mathcal{E}_1 -polar if it is of zero capacity. Let $\{T_t, t \ge 0\}$ be the L²-semigroup associated with $(\mathcal{E}, \mathcal{F})$. We say that a Borel set B of X is T_{t} invariant if $T_t(I_B u) = I_B T_t u$ for any $u \in L^2(X, m)$, and t > 0. $(\mathcal{E}, \mathcal{F})$ is called irreducible if for any T_t -invariant set B, B or X-B is *m*-negligible. A Borel set B of X is **M**-invariant if $P_x(X_t \in B_{\Delta}, X_{t-} \in B_{\Delta})$, for any t > 0 = 1, for any $x \in B$. M. Fukushima-K. Sato-S. Taniguchi [10] investigated the closable part of general symmetric bilinear form on a real Hilbert space. They characterized the closable part of a pre-Dirichlet form under the changes of underlying measures and gave a necessary and sufficient condition for the closability. They used the analytic characterization of the time changed Dirichlet space formulated in K. Kuwae-S. Nakao [12]. In these mentioned articles assumed is that $(\mathcal{E}, \mathcal{F})$ is either transient or irreducible in order to make a reduction to the transient case, but the irreducibility is not easily checked.

In this paper, we will not assume the irreducibility of $(\mathcal{E}, \mathcal{F})$ nor its transience. In Section 2 and Section 3 we prepare some quasi-notions and decomposition theorems of the state space X. In particular, we give a decomposition

$$X = X^{(c)} + X^{(d)} + N$$
,

where $X^{(c)}$ (resp. $X^{(d)}$) is an *M*-invariant conservative (resp. dissipative) part of X, and N is a properly exceptional set. In Section 4 we give a characterization of the regular Dirichlet space associated with the time changed process using the above decomposition. In Section 5 we fix a closed set Y and consider the space $C|_{Y} = \{u \in C_0(Y); u = \overline{u}|_{Y}, \text{ for some } \overline{u} \in C\}$. We then introduce, for each