LIFSCHITZ TAILS FOR RANDOM SCHRÖDINGER OPERATORS ON NESTED FRACTALS

TADASHI SHIMA

(Received September 12, 1991)

1. Introduction

The nested fractal introduced by Lindstrøm [7] is a certain class of fractal possessing finite ramifiedness and some symmetry. The Sierpinski gasket, the snowflake fractal and the Pentakun are members of this class (see [6], [7]). In this paper, we are concerned with two types of random operators on nested fractals; the Laplacian with Poisson obstacles and the random Schrödinger operator both formulated presently.

Let (Ψ, E) be a unit nested fractal in R^D constructed by a family of α -similitudes $\Psi = \{\Psi_0, \dots, \Psi_{N-1}\}$ with $\Psi_0(x) = \alpha^{-1}x$, $\alpha > 1$ (see Definition (2.1) and (2.2)). We then consider the expanded nested fractals defined by $E^{\langle m \rangle} = \alpha^m E$ and $E^{\langle \infty \rangle} = \bigcup_m E^{\langle m \rangle}$. By the Laplacian Δ , we mean the generator of Lindstrøm's Brownian motion of E ([7]). The associated Dirichlet form has been identified by Kusuoka [5]. We formulate our random operators by perturbing the corresponding Dirichlet form $(\mathcal{F}^{\langle m \rangle}, \mathcal{E}^{\langle m \rangle})$ on $L^2(E^{\langle m \rangle}; \mu)$, where μ is a $\log N/\log \alpha$ -dimensional Hausdorff measure on $E^{\langle \infty \rangle}$ with $\mu(E) = 1$.

Let \mathcal{H}_{ω} be the support of the Poisson random measure on $E^{\langle \infty \rangle}$ with the intensity measure $\nu \mu$ (ν is a positive constant) and let $\Delta_{\omega}^{\langle m \rangle}$ be the self-adjoint operator on $L^2(E^{\langle m \rangle}; \mu)$ associated with the Dirichlet form $(\mathcal{F}_{\omega}^{\langle m \rangle}, \mathcal{E}^{\langle m \rangle})$, where

$$\mathcal{L}_{\omega}^{\langle m \rangle} = \{ f \in \mathcal{L}^{\langle m \rangle}; f(p) = 0, p \in \mathcal{L}_{\omega} \cap E^{\langle m \rangle} \}.$$

 $\Delta_{\omega}^{\langle m \rangle}$ is called the Laplacian with Poisson obstacles.

For another type of random operator, we first introduce a probability space $(\hat{\Omega}, \hat{\Sigma}, \hat{P})$ on the set $\hat{\Omega}$ of positive Radon measures on $E^{\langle \infty \rangle}$ so that restrictions of each measure to unit fractals constituting $E^{\langle \infty \rangle}$ behave as independent, identically distributed random variables (see (3.8)). The random Schrödinger operator is by definition the self-adjoint operator $H_{\hat{\omega}}^{\langle m \rangle}$ on $L^2(E^{\langle m \rangle}; \mu)$ associated with the Dirichlet form $(\mathcal{E}_{\hat{\omega}}^{\langle m \rangle}, \mathcal{F}^{\langle m \rangle})$, where

$$\mathcal{E}_{\hat{\omega}}^{\langle m \rangle}(u,v) = \mathcal{E}^{\langle m \rangle}(u,v) + \int_{\mathbb{R}^{\langle m \rangle}} u(x)v(x)\delta(dx) \quad \text{for } \delta \in \hat{\Omega}.$$

The spectrum of $-\Delta_{\omega}^{\langle m \rangle}$ consists only of non-negative eigenvalues with