r-FOLD **C-SKEW-SYMMETRIC MULTILINEAR FORMS**

Teruo KANZAKI

(Received October 16, 1991)

Let R be a commutative ring with identity 1, and for an integer $r \ge 2$, ζ an element of R with $\zeta r = 1$. For an R-module M and an r-fold multilinear map θ on M, we shall say that θ is ζ -skew symmetric, if $\theta(x_1, x_2, x_3, \dots, x_r) =$ $\zeta \theta(x_2, x_3, \dots, x_r, x_1)$ holds for every elements $x_1, x_2, x_3, \dots, x_r \in M$. In this paper, we investigate the *R*-module with *r*-fold ζ -skew symmetric multilinear map. In \$1, we prove some fundamental properties on r-fold ζ -skew symmetric multilinear R-modules, which include ones on symmetric or cyclically-symmetric multilinear R-modules in $[H_2]$ or $[K_2]$. In §2, we give two examples of r-fold ζ -skew-symmetric multilinear *R*-modules, one is the determinants of matrices, and another is a 3-fold trace form of an *R*-algebra. In §3, we shall show that a finitely generated ζ -skew symmetric multilinear *R*-module is characterized by an r-fold ζ -skew-symmetric matrix, which is an expansion of [K₁]. In §4, for a 3fold 1-skew symmetric multilinear R-module $\langle [A] \rangle$ defined by a 3-fold 1-skew symmetric matrix A, we give some conditions for $\langle [A] \rangle$ to be an associative *R*-algebra by some multiplication on $\langle [A] \rangle$.

1. r-fold ζ -skew-symmetric multilinear R-module $(M, \theta; U)$

Let R be a commutative ring with identity 1, r a positive integer ($r \ge 2$), ζ an element of R with $\zeta^r = 1$, and U a faithful R-module.

DEFINITION For an R-module M, we shall call $(M, \theta; U)$ an r-fold ζ -skewsymmetric multilinear R-module, simply r-fold ζ -skew-symmetric R-module, if $\theta: M \times M \times \cdots \times M \to U; (x_1, x_2, x_3, \cdots, x_r) \longrightarrow \theta(x_1, x_2, x_3, \cdots, x_r)$ is an r-fold multilinear map of M into U satisfying $\theta(x_1, x_2, x_3, \cdots, x_r) = \zeta \theta(x_2, x_3, \cdots, x_r, x_1)$. If $\zeta = 1$, r-fold 1-skew-symmetric R-module is called an r-fold cyclically symmetric R-module. By θ^* and θ_* , one denotes the following R-homomorphisms:

$$\begin{array}{l} \theta_* \colon M \to \operatorname{Hom}_{\mathbb{R}}(\otimes_{\mathbb{R}}^{r-1}M, U); \ x \ \rightsquigarrow \to \theta(x, -) \ , \quad \text{and} \\ \theta_* \colon \otimes_{\mathbb{R}}^{r-1}M \to \operatorname{Hom}_{\mathbb{R}}(M, U); \ x_1 \otimes \cdots \otimes x_{r-1} \ \rightsquigarrow \to \theta(-, x_1, \cdots, x_{r-1}) \ , \end{array}$$

where $\otimes_{R}^{r-1} M$ and $\theta(x, -)$ denote $\otimes_{R}^{r-1} M = M \otimes_{R} M \otimes_{R} \cdots \otimes_{R} M$: the tensor product of r-1-copies of M over R, and $\theta(x, -)$: $\otimes_{R}^{r-1} M \to U$; $x_{2} \otimes \cdots \otimes x_{r} \land \lor \to \theta(x, x_{2}, \cdots, x_{r})$. $(M, \theta; U)$ is said to be *regular*, if θ^{*} is injective. If θ^{*} is in-