Kôno, S. Osaka J. Math. 29 (1992), 697-717

STABLE HOMOTOPY TYPES OF STUNTED LENS SPACES MOD 4

Dedicated to Professor Hideki Ozeki on his 60th birthday

Susumu KÔNO

(Received December 26, 1991)

1. Introduction

Let $L^{n}(q) = S^{2n+1}/(\mathbb{Z}/q)$ be the (2n+1)-dimensional standard lens space mod q. As defined in [8], we set

(1.1)
$$L_q^{2n+1} = L^n(q),$$
$$L_q^{2n} = \{[z_0, \dots, z_n] \in L^n(q) | z_n \text{ is real} \ge 0\}$$

The stable homotopy types (S-types) of stunted lens spaces L_q^m/L_q^n have been studied by several authors (e.g. [7], [8], [9], [10], [11] and [12]). For the case q=2, D.M. Davis and M. Mahowald have completed the classification of the stable homotopy types of stunted real projective spaces in [7]. Their result shows that we can use structures of J-groups of suspensions of stunted real projective spaces to obtain the necessary conditions for stunted real projective spaces RP(m)/RP(n) and RP(m+t)/RP(n+t) to have the same stable homotopy type as follows: if RP(m)/RP(n) and RP(m+t)/RP(n+t) have the same stable homotopy type, then there exists a non-negative integer N such that

$$\widetilde{J}(S^{j}(RP(m)/RP(n))) \cong \widetilde{J}(S^{j-t}(RP(m+t)/RP(n+t)))$$

for each integer j with $j \ge N$ (see [13]). For the case where q is an odd prime, T. Kobayashi has obtained some necessary conditions for stunted lens spaces L_q^m/L_q^n and L_q^{m+t}/L_q^{n+t} to have the same stable homotopy type (cf. [10]). The conditions are also sufficient if $k=[m/2]-[(n+1)/2] \equiv 0 \pmod{(q-1)}$ or $n+1\equiv 0 \pmod{2q^{\lfloor k/(q-1) \rfloor}}$. We can use structures of J-groups of suspensions of stunted lens spaces mod q to obtain the conditions (see [14]). The object of this paper is to study the stable homotopy types of stunted lens spaces L_q^m/L_q^n for q=4 or 8.

In order to state our results, we prepare functions h_1 , h_2 , α , β_1 , β_2 and γ_1 defined by

(1.2)
$$h_1(k) = \begin{cases} [k/4] + [(k+7)/8] + [(k+4)/8] & (k \ge 2) \\ 0 & (1 \ge k \ge 0) \end{cases}.$$