Kobayashi, M. Osaka J. Math. 29 (1992), 617-634

CUT-AND-PASTES OF INCOMPRESSIBLE SURFACES IN 3-MANIFOLDS

MASAKO KOBAYASHI¹

(Received August 26, 1991) (Revised January 14, 1992)

1. Introduction

Let M be a compact orientable 3-manifold and F_1 and F_2 properly embedded surfaces in M. If F_1 and F_2 intersect transversely, then by cutting F_1 and F_2 along the intersection and regluing them in a different way, we obtain another embedded surface in M.

DEFINITION. Let F_1 and F_2 be orientable surfaces properly embedded in M intersecting transversely. A *cut-and-paste* (CP) operation on a component C of $F_1 \cap F_2$ is the following operation in a regular neighborhood of C, N(C): Cut F_1 and F_2 on C and reglue them in a different way. See Figure 1.1.

Fig 1.1.

Note that there are two choices in regluing. When we apply a CP operation on each component of $F_1 \cap F_2$, we obtain an embedded surface F in M. We say that F is obtained from F_1 and F_2 by a (way of) CP operation.

Suppose that both F_1 and F_2 are incompressible. In general, a surface which is obtained from F_1 and F_2 by a CP operation is possibly compressible. But we can prove that in certain cases there is a CP operation which yields an

¹ A fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists. Supported by Grant-in Aid for Scientific Research, The ministry of Education, Science and Culture.