Sumi, T. Osaka J. Math. 29 (1992), 607-615

Z/kZ-FINITENESS FOR CERTAIN S1-SPACES

Toshio SUMI

(Received July 25, 1991) (Revised September 6, 1991)

Introduction

Let $G - \mathcal{FDCW}$ denote the category of G-spaces having the G-homotopy type of a finitely dominated G - CW complex for a compact Lie group G. Lück [8] has introduced a functor Wa^{c} from $G - \mathcal{FDCW}$ into the category of abelian groups and has realized the equivariant finiteness obstriction as the element $w^{c}(X)$ in $Wa^{c}(X)$. That is, a finitely dominated G - CW complex X is G-homotopy equivalent to a finite G - CW complex if and only if $w^{c}(X) = 0$. When G is the trivial group, there is an isomorphism from $Wa^{c}(X)$ to the reduced projective group $\tilde{K}_{0}(\mathbb{Z}[\pi_{1}(X)])$ which sends the element $w^{c}(X)$ to the Wall's finiteness obstruction ([14]).

Anderson [1] and Ehrlich [4] have studied a sufficient condition for $w^{(1)}(E) = 0$ for some fibration $E \to B$ with fiber S^1 . Munkholm, Pedresen [11], Lück [6, 7, 9] and others have studied the transfer map $\tilde{K}_0(\mathbb{Z}[\pi_1(B)]) \to \tilde{K}_0(\mathbb{Z}[\pi_1(E)])$. The purpose of this paper is to get a sufficient condition for $w^L(X) = 0$ for a S^1 -space X and a finite cyclic group L.

We call G-maps $f_0: Y_0 \rightarrow X$ and $f_0: Y_4 \rightarrow X$ equivalent if there exists a commutative diagram

such that (Y_1, Y_0) and (Y_3, Y_4) are relatively finite G-CW complexes, and $Y_1 \rightarrow Y_2$ and $Y_3 \rightarrow Y_2$ are G-homotopy equivalences. The group $Wa^c(X)$ consists of equivalence classes $[f: Y \rightarrow X]$ of the set of G-maps $f: Y \rightarrow X$ with Y finitely dominated and $w^c(X)$ is the equivalence class containing the identity 1_X of X. The additive structure on $Wa^c(X)$ is given by a disjoint sum:

$$[f: Y \to X] + [g: Z \to X] = [f \coprod g: Y \coprod Z \to X]$$