Iida, M. Yamada, Y. and Yotsutani, S. Osaka J. Math. 29 (1992), 483-495

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR A MATHEMATICAL MODEL ON CHEMICAL INTERFACIAL REACTIONS

Dedicated to Professor Hiroki Tanabe on his sixtieth birthday

MASATO IIDA, YOSHIO YAMADA AND SHOJI YOTSUTANI

(Received September 13, 1991)

1. Introduction

In the present paper we investigate the asymptotic behavior of solutions for parabolic systems closely related with a chemical interfacial reaction model which is considered in Yamada and Yotsutani [7]. Let I and \overline{I} denote the intervals (0, 1) and [0, 1] respectively. Consider an initial boundary value problem for $u_i = u_i(x, z)$ (i=1, 2, 3 and $(x, z) \in \overline{I} \times [0, \infty)$):

$$(\mathbf{P}) \qquad \begin{cases} a_i(x)\frac{\partial u_i}{\partial x} = \frac{\partial^2 u_i}{\partial x^2}, & (x, z) \in I \times (0, \infty), \\ \frac{\partial u_i}{\partial x} (0, z) = R_i(u_1(0, z), u_2(0, z), u_3(0, z)), & z \in (0, \infty), \\ \frac{\partial u_i}{\partial x} (1, z) = 0, & z \in (0, \infty), \\ u_i(x, 0) = \phi_i(x) \ge 0, & x \in I, \end{cases}$$

where $a_i(x)$ (i=1, 2, 3) are given functions, $\phi_i(x)$ (i=1, 2, 3) are given nonnegative initial data and

$$egin{aligned} R_1(u_1,\,u_2,\,u_3) &= k_1\,R_0(u_1,\,u_2,\,u_3) \ , \ R_2(u_1,\,u_2,\,u_3) &= k_2\,R_0(u_1,\,u_2,\,u_3) \ , \ R_3(u_1,\,u_2,\,u_3) &= -k_3\,R_0(u_1,\,u_2,\,u_3) \ , \ R_0(u_1,\,u_2,\,u_3) &= (u_1^{n_1}\,u_1^{n_2}{-}u_1^{n_3})\,eta(u_1,\,u_2,\,u_3) \end{aligned}$$

with positive constants k_i (i=1, 2, 3), positive integers n_i (i=1, 2, 3) and a suitable positive function β .

The initial boundary value problem (P) models chemical reactions on interfaces. Such a model has been proposed by Kawano et al. [3]. They put

$$a_i(x) = c_i(1-x^2)$$
 $(i = 1, 2, 3)$,