A REMARK ON FINITE POINT TRANSITIVE AFFINE PLANES WITH TWO ORBITS ON I_{∞}

CHIHIRO SUETAKE

(Received October 4, 1991)

In this note for the most part we shall use the notations of [1]. Let $\mathscr{P} = \pi \cup l_{\infty}$ be the projective extension of an affine plane and G a collineation group of \mathscr{P} . If p is a point of \mathscr{P} and l is a line of \mathscr{P} , then G(p, l) is the subgroup G consisting of all perspectivities in G with center p and axis l. If m is a line of \mathscr{P} , then G(m, m) is the subgroup of all elations in G with axis m.

In [3] the author proved the following theorem on Kallaher's conjecture (See [1]).

Theorem 1. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π . Suppose that G has two orbits of length 2 and n-1 on l_{∞} . Then π is a translation plane and the group Gcontains the group of translations of π , except in the following case:

(*) $|G(l_{\infty}, l_{\infty})| = n = 2^{m}$ for some $m \ge 1$, $G(p_{1}, l_{\infty}) = G(p_{2}, l_{\infty}) = 1$ and $|G(p, l_{\infty})| = 2$ for all $p \in l_{\infty} - \{p_{1}, p_{2}\}$, where $\{p_{1}, p_{2}\}$ is a G-orbie of length 2 on l_{∞} .

The case (*) actually occurs when π is a desarguesian plane of order 2. Maharjan [2] studied the planes with property (*) under the condition that $n \leq 4$. The purpose of this note is to prove the following.

Proposition 2. Assume (*). Then n=2 and G is a cyclic group of order 4.

Maharjan [2] proved the proposition under the condition that $n \leq 4$. The proposition, together with Theorem 1, gives the following.

Theorem 3. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π . If G has two orbits of length 2 and n-1 on l_{∞} , then one of the following statements holds:

(i) The plane π is a tanslation plane and the group G contains the group of translations of π .

(ii) n=2 and G is a cyclic group of order 4.

In the rest of the note, we prove Proposition 2. Set $T=G(l_{\infty}, l_{\infty})$ and $L=G_{P_1,P_2}$. Then |G:L|=2. Let O be an affine point of π . Set $l=P_1O$. Sup-