Yamaguchi, A. Osaka J. Math. 29 (1992), 347-359

THE STRUCTURE OF THE COHOMOLOGY OF MORAVA STABILIZER ALGEBRA S(3)

ATSUSHI YAMAGUCHI

(Received April 26, 1991) (Revised June 28, 1991)

Introduction.

Let X be a space and let p be a prime number. The E_2 -term of the Adams-Novikov spectral sequence associated with BP-theory at p converging to the plocalized homotopy group of X is given by $\operatorname{Ext}_{BP*BP}(BP_*, BP_*(X))$ ([1], [4]). This motivates to study $\operatorname{Ext}_{BP*BP}(BP_*, M)$ for a BP_*BP -comodule M. If X is a finite complex, $BP_*(X)$ is a finitely presented BP_* -module ([3]). Recall ([1], [14]) that $BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \cdots]$, deg $v_n = 2(p^n - 1)$, and I_n denotes an invariant prime ideal $(p, v_1, v_2, \cdots, v_{n-1})$ of BP_* . Landweber proved the following theorem.

Theorem ([6]). Let M be a BP_*BP -comodule which is finitely presented as a BP_* -module. Then, M has a finite filtration by BP_*BP -subcomodules $0=M_0$ $\subset M_1 \subset \cdots \subset M_k = M$ such that for $1 \le i \le k$, M_i/M_{i-1} is isomorphic to BP_*/I_{n_i} for some $n_i \ge 0$ as a BP_*BP -comodule up to shifting degrees.

By virtue of the above and a spectral sequence $E_{2}^{s,t} = \operatorname{Ext}_{BP_*BP}^{s+t}(BP_*, M_t | M_{t-1}) \Rightarrow \operatorname{Ext}_{BP_*BP}^{s+t}(BP_*, M)$ (See section 2) for M as above, we can relate $\operatorname{Ext}_{BP_*BP}(BP_*, BP_* | I_n)$ $(n=0, 1, 2, \cdots)$ with $\operatorname{Ext}_{BP_*BP}(BP_*, M)$. Hence it is necessary to know $\operatorname{Ext}_{BP_*BP}(BP_*, BP_* | I_n)$ before we study the general case.

For small n, $\operatorname{Ext}_{BP*BP}(BP_*, BP/I_n)$ also has a geometric significance since there is a spectrum V(n) whose BP-homology is isomorphic to BP_*/I_{n+1} , generalizing the Moore spectrum, if p>2n and n=0, 1, 2, 3 ([2], [15]). Hence $\operatorname{Ext}_{BP*BP}(BP_*, BP_*/I_{n+1})$ is the E_2 -term of the Adams-Novikov spectral sequence converging to the homotopy group of V(n). We note that V(n) is a ring spectrum if p>2n+2 ([15]).

Since multiplication by v_n on BP_*/I_n is a BP_*BP -comodule homomorphism, $v_n^{-1}BP_*/I_n$ is a BP_*BP -comodule and $\operatorname{Ext}_{BP_*BP}(BP_*, BP_*/I_n)$ is a module over $F_p[v_n]$ if n > 0. In fact, $\operatorname{Ext}_{BP_*BP}(BP_*, BP_*/I_n)$ is a graded commutative algebra and $\operatorname{Ext}_{BP_*BP}^0(BP_*, BP_*/I_n)$ is isomorphic to $F_p[v_n]$ if n > 0 ([5], [11]). Thus $v_n^{-1}\operatorname{Ext}_{BP_*BP}(BP_*, BP/I_n)$ makes sense and it is obviously isomorphic to $\operatorname{Ext}_{BP_*BP}(BP_*, v_n^{-1}BP_*/I_n)$.