Nishimura, T. Osaka J. Math. 29 (1992), 233-245

EXTERIOR PRODUCT BUNDLE OVER COMPLEX ABSTRACT WIENER SPACE

TAKASHI NISHIMURA

(Received April 9, 1991)

1. Introduction

In this paper, we consider a *complex abstract Wiener space* (CAWS) *(B,H,μ),* that is a triplet of a complex separable Banach space *B^y a* complex separable Hubert space *H* which is densely and continuously imbedded in *B* and a Borel probability measure μ on B such that

$$
(1.1) \quad \int_{B} \exp(\sqrt{-1} \operatorname{Re}_B\langle x, \varphi\rangle_{B^*}) \mu\left(dz\right) = \exp(-\frac{1}{4} ||\varphi||_{H^*}^2) \quad \text{for } \varphi \in B^* \subset H^*.
$$

Moreover, we assume that a strictly positive self-adjoint operator A on H^* is given and $B^* \subset C^{\infty}(A) = \bigcap_{n=1}^{\infty} \text{Dom}(A^n)$. Then we can define $D_A p(z) =$ $(\sqrt{A}\bigoplus \sqrt{A})Dp(z)$ for $p \in \mathcal{P}(B; E)$, *E*-valued polynomial functional on *B*.

H-derivative *D* is a fundamental tool in Malliavin's calculs ([6]), but here we consider D_A instead of D , because we keep quantum field theoretical models in mind. In fact, $\frac{1}{2}D_A^*D_A=d\Gamma(A\oplus\bar{A})$, a free Hamiltonian for a complex Bose field (and its anti-particle field).

Following [3] and [4], we regard *B* as an infinite dimensional manifold with cotangent space $(H^*_R)^c$ on each $z \in B$. Consequently its exterior product bundle becomes $B \times \Lambda(H_k^*)^c$ and the space of its L^2 -sections becomes $L^2(B, \mu: \Lambda(H_k^*)^c)$, i.e. the space of $\Lambda(H_R^*)^c$ -valued L^2 -functions on B or $L^2(B, \mu) \otimes \Lambda(H_R^*)^c$, a tensor product of the Bosonic Fock space and the Fermionic Fock space. On this space we define an exterior derivative d_A using D_A . Then $\frac{1}{2}(d_A^*d_A + d_A d_A^*)$ $=d\Gamma(A\oplus\overline{A})\oplus d\Lambda(A\oplus\overline{A})$, a free Hamiltonian for an $N=2$ supersymmetric quantum field.

As in the finite dimensional case, d_A is decomposed as $d_A = \partial_A + \overline{\partial}_A$, and Laplace-Beltrami operators \Box_A and \Box_A are defined as $\Box_A = \partial_A^* \partial_A + \partial_A \partial_A^*$ and $\Box_A = \bar{\partial}_A^* \bar{\partial}_A + \bar{\partial}_A \partial_A^*$, respectively. Since $\bar{\partial}_A^2 = 0$, $\bar{\partial}_A$ defines an elliptic complex and $\bar{\partial}_A$ -cohomology groups can be defined as $\hat{\Phi}_A^{p,q}(B)=\text{Ker}(\bar{\partial}_A|\Lambda_2^{p,q}(B))$), where $\Lambda_2^{p,q}(B) = L^2(B, \mu: \Lambda^{p,q}(H_R^*))$, the space of square in-