Yosimura, Z. Osaka J. Math. 29 (1992), 41-62

*E*_{*}-INJECTIVE SPECTRA AND INJECTIVE *E*_{*}*E*-COMODULES

Dedicated to Professor Haruo Suzuki on his sixtieth birthday

ZEN-ICHI YOSIMURA

(Received June 25, 1990)

0. Introduction

In [13] Ohkawa introduced the notion of the injective hull of spaces and spectra with respect to homology and proved the existence theorem [13, Theorem 1]. Following [13, Definition 1 i)] we call a CW-spectrum $W E_*$ -injective if any map $f: X \to Y$ induces an epimorphism $f^*: [Y, W] \to [X, W]$ whenever $f_*: E_*X \to E_*Y$ is a monomorphism, for a fixed CW-spectrum E. A CWspectrum W is E_* -injective if and only if the homomorphism $\kappa_E: [X, W] \to$ $\operatorname{Hom}(E_*X, E_*W)$ defined by $\kappa_E(f)=f_*$ is a monomorphism for any CWspectrum X (see [13, Proposition 7]). In this note we will be concerned about E_* -injective spectra.

For each CW-spectrum X, E_*X is regarded as a module over the algebra E^*E of cohomology operations. Under the restriction that E is finite, Ohkawa [13, Theorem 3 i) and iii)] gave the following characterization.

Theorem 0. Assume that a CW-spectrum E is finite. Then the following conditions are equivalent:

- i) W is an E_* -injective spectrum.
- ii) W is an E_* -local spectrum such that E_*W is injective as an E^*E -module.
- iii) $\kappa_E: [X, W] \rightarrow \operatorname{Hom}_{E^*E}(E_*X, E_*W)$ is an isomorphism for any CW-spectrum X.

According to [2, Proposition III.13.4] (or see [1]), the well known ring spectra E=S, HZ/p, MO, MU, MSp, KU and KO satisfy some of nice properties as stated in the beginning of §2. For example, E_*E becomes flat as an E_* -module, and then E_*X may be regarded as a comodule over the coalgebra E_*E . In §2 we will prove the following result (Theorem 2.1) for such a nice ring spectrum E, corresponding to Theorem 0 for a finite spectrum E.

Theorem 1. Let E be a ring spectrum such that E_*E is flat as an E_* -module. Assume that E satisfies the property (K'') stated in the beginning of §2. Then the following conditions are equivalent: