Sumitomo, T and K. Tandai Osaka J. Math. 28 (1991), 1017–1033

INVARIANT DIFFERENTIAL OPERATORS ON THE GRASSMANN MANIFOLD $SG_{2,n-1}(R)$

TAKESHI SUMITOMO AND KWOICHI TANDAI

(Received October 18, 1991)

0. Introduction. The Grassmann manifold $SG_{2,n-1}(\mathbf{R}) = SO(n+1)/SO(n-1) \times SO(2)$ with its canonical Riemannian metric is known to be a Riemannian symmetric space of rank 2. Hence the algebra $D(SG_{2,n-1}(\mathbf{R}))$ of SO(n+1)-invariant (linear) differential operators on $SG_{2,n-1}(\mathbf{R})$ is generated by two differential operators.

It is the aim of our paper to exhibit simultaneous eigenspace decomposition of appropriate generators Δ_0^{\uparrow} and Δ_1^{\uparrow} of the algebra $D(SG_{2n-1}(\mathbf{R}))$. We have obtained in [7] the followings:

(1) the eigenspace decomposition of Δ_0 restricted to $K^*(S^n, g_0)$ is given, where g_0 is the canonical metric on S^n and Δ_0 is the Lichnerowicz operator acting on the graded algebra $S^*(S^n, g_0)$ of symmetric tensor fields on the standard sphere (S^n, g_0) and $K^*(S^n, g_0)$ is the graded subalgebra of $S^*(S^n, g_0)$ generated by Killing vector fields,

(2) Radon transform Λ :

$$S^*(S^n, g_0) \rightarrow C^{\infty}(SG_{2,n-1}(R))$$

intertwines Δ_0 with the Laplace Beltrami operator Δ_0^{\wedge} on $SG_{2,n-1}(\mathbf{R})$, i.e.,

$$(\Delta_0 \xi)^{\wedge} = \Delta_0^{\wedge} \xi^{\wedge}$$

for $\xi \in S^*(S^n, g_0)$,

(3) the eigenspace decomposition obtained in (1) is transferred to that of Δ_0° , since the kernel of the Radon transform restricted to $\mathbf{K}^*(S^n, g_0)$ is the principal ideal generated by $g_0/2-1$ and the image of $\mathbf{K}^*(S^n, g_0)$ is uniformly dense in $C^{\infty}(\mathbf{SG}_{2,n-1}(\mathbf{R}))$.

In the present paper a new differential operator Δ_1 which acts on $S^*(S^n, g_0)$ with analogous properties as (1), (2), (3) above is constructed.

Especially Δ_0° together with the differential operator Δ_1° corresponding to Δ_1 by the Radon transform are found to be a set of generators of the algebra $D(SG_{2,n-1}(\mathbf{R}))$.

In 1 and 2, we recall the results obtained in [7] with some improvements.