Imaoka, M. Osaka J. Math. 28 (1991), 975–984

*µ***-ELEMENTS IN S¹-TRANSFER IMAGES**

MITSUNORI IMAOKA

(Received February 15, 1991)

1. Introduction and Results

Let $\mu_r \in \pi_{s_{r+1}}^s(S^0)$ be a μ -element of the (8r+1)-dimensional stable homotopy group of the sphere. Adams [1] gave a definition of μ_r , and showed that $d_{\mathcal{B}}(\mu_r) \neq 0$ and

(1.1)
$$\pi^{s}_{8r+1}(S^{0}) = Z/2 \langle \mu_{r} \rangle \oplus \operatorname{Ker}(d_{R}) \quad \text{for} \quad r \geq 0 ,$$

where $d_R: \pi_{8r+1}^s(S^0) \to \text{Hom}(KO^0(S^0), KO^0(S^{8r+1}))$ is the *d*-invariant in the KOtheory. We assume that the mod 2 Adams filtration of μ_r is equal to 4r+1, which determines each μ_r as a uniquely defined element.

Throughout the paper, CP_n^m denotes the suspension spectrum of a Thom complex $(CP^{m-n})^{n\xi}$ for $-\infty < n \le m \le \infty$ and $n \ne \infty$, where ξ is the canonical complex line bundle over the complex projective space CP^{m-n} . In [5] and [10], it is shown that, for r > 0, μ_r is not in the image of the homomorphism t_* : $\pi_{8r}^s(CP_0^\infty) \rightarrow \pi_{8r+1}^s(S^0)$ induced from a stable map t called a S^1 -transfer map. On the other hand, Knapp [9] investigated S^1 -transfer maps $t_n: \Sigma^{-2n+1} CP_n^\infty \rightarrow S^0$, and proved that μ_r is in the image of $(t_2)_*$. We remark that $t_0=t$. The purpose of the present paper is to discuss whether or not μ_r is in the image of $(t_n)_*$ for other values of n.

Let $I(\mu_r)$ be an ideal of $\pi^s_*(S^0)$ generated by μ_r . Then our main result is stated as follows:

Theorem 1. Assume that $r \ge 0$. If $\binom{8r+2k+1}{4r+1} + 2\binom{8r+2k-1}{4r-1} \equiv 0 \mod 4$ for an integer k, then

$$I(\mu_r) \subset \operatorname{Im}\left[(t_{2k})_* : \pi_*^s(\Sigma^{-4k+1} \operatorname{CP}_{2k}^\infty) \to \pi_*^s(S^0)\right].$$

In contrast with Theorem 1, it holds that $\mu_r \notin \operatorname{Im}(t_{2k+1})_*$ for any $r \ge 0$ and k. More generally, if we treat μ_r with indeterminacy $\operatorname{Ker}(d_R)$, then it is possible to give a necessary and sufficient condition for our problem. In order to state it, we need some notations. Let a_i^i be the coefficient of x^i in the power series expansion of $((e^x-1)/x)^i$, and, for $n \le m$,

(1.2)
$$u(n,m) = \operatorname{Min} \{l > 0 \mid la_{m-j}^{j} \in \mathbb{Z} \text{ for all } j \text{ with } n \leq j \leq m \}$$