THE EIGENVALUE DISTRIBUTION OF ELLIPTIC OPERATORS WITH HÖLDER CONTINUOUS COEFFICIENTS

YOICHI MIYAZAKI

(Received March 26, 1991)

1. Introduction

In this paper we try to improve the estimates for the remainder term in the asymptotic formula for the eigenvalue distribution of an elliptic operator A of order 2m in R^n whose principal part has Hölder continuous coefficients with exponent τ , $0 < \tau \le 1$. In some cases, mainly when n=1 we obtain a better estimate for the remainder term of the counting function N(t) than the known results:

$$N(t) = \mu_A(\Omega)t^{n/2m} + O(t^{(n-\tau)/2m})$$
 as $t \to \infty$.

In other cases it remains open whether our new estimate is valid or not. Instead of solving this problem we give a corresponding estimate for the remainder term in the asymptotic formula for the partition function (the trace of the heat kernel):

$$U(t) = \Gamma\left(\frac{n}{2m} + 1\right) \mu_A(\Omega) t^{-n/2m} + O(t^{(\tau - n)/2m}) \quad \text{as } t \to 0,$$

when $0 < \tau < 1$ and 2m > n.

In order to describe the results more precisely and compare our results with the known ones we shall recall some standard notations and hypotheses. Let Ω be a domain in the *n*-dimensional Euclidean space \mathbf{R}^n with a generic point $x=(x_1, \dots, x_n)$. We denote by $\alpha=(\alpha_1, \dots, \alpha_n) \in \mathbf{Z}_+^n$, $\mathbf{Z}_+=\{0, 1, 2, \dots\}$ a multi-index of length $|\alpha|=\alpha_1+\dots+\alpha_n$ and use the notations

$$\begin{split} \partial^{\mathbf{z}} &= \partial_x^{\mathbf{z}} = \partial_{1}^{\mathbf{z}_1} \cdots \partial_{n}^{\mathbf{z}_n}, \quad \partial_k = \partial/\partial x_k, \\ D^{\mathbf{z}} &= D_x^{\mathbf{z}} = D_{1}^{\mathbf{z}_1} \cdots D_{n}^{\mathbf{z}_n}, \quad D_k = -\sqrt{-1}\partial/\partial x_k. \end{split}$$

For an integer $m \ge 0$ $H^m(\Omega)$ is to be the set of all functions whose distributional derivatives of order up to m belong to $L_2(\Omega)$ and we introduce in it the usual norm