PROPAGATION OF SINGULARITIES FOR HYPERBOLIC OPERATORS WITH MULTIPLE INVOLUTIVE CHARACTERISTICS

MILENA PETRINI AND VANIA SORDONI

(Received January 11, 1991)

0. Introduction

The aim of this paper is to study the propagation of C^{∞} -singularities for an hyperbolic pseudodifferential operator whose principal symbol vanishes at order $m \ge 2$ on an involutive manifold, generalizing a well known result obtained by R. Lascar [8] Chapter III, in the case m=2.

Let X be an open subset of \mathbb{R}^{n+1} , denote by $T^*X\cong X\times \mathbb{R}^{n+1}$ the cotangent bundle with canonical coordinates (x,ξ) and let $\omega=\sum\limits_{j=0}^n \xi_j\,dx_j$ (resp. $\sigma=d\omega=\sum\limits_{j=0}^n d\xi_j\wedge dx_j$) denote the canonical 1-form (resp. 2-form) on T^*X . By $T^*X\setminus 0$ we denote T^*X minus the zero section. Let $P(x,D_x)$ be a classical pseudo-differential operator (pdo) in X of order $m,m\in \mathbb{N}$, with symbol

$$p(x,\xi) \sim \sum_{j\geq 0} p_{m-j}(x,\xi)$$

and let $\varphi \in C^{\infty}(X)$ be a real-valued function, with $d\varphi(x) \neq 0 \ \forall x \in X$. We shall make the following assumptions:

- (H₁) P is hyperbolic with respect to the level surfaces of φ , i.e. p_m is real-valued and
 - i) $p_{m}(x, d\varphi(x)) \neq 0 \ \forall x \in X;$
 - ii) for every $(x, \xi) \in T^*X$, ξ independent of $d\varphi(x)$, the function $p_m(x, \xi + td\varphi(x))$ is a polynomial of degree m in t having only real roots.
- (H₂) There exists a C^{∞} -conic, non radial, involutive submanifold $N \subset T^*X \setminus 0$ of codimension p+1, such that, for $j \ge 0$, p_{m-j} vanishes at least of order $(m-2j)_+$ on $N(t_+=\max(t,0))$.

The above conditions on N imply that, for any $\rho \in N$, we have $T_{\rho}(N)^{\sigma} \subset T_{\rho}(N)$ $(T_{\rho}(N)^{\sigma})$ being the orthogonal of $T_{\rho}(N)$ with respect to σ) and $\omega(\rho) \notin T_{\rho}(N)^{\sigma}$. As a consequence, N is foliated by leaves F_{ρ} , $\rho \in N$, which are (immersed) C^{∞} submanifold of N of dimension p+1 transversal to the radial vector field, with $T_{\rho}(F_{\rho}) = T_{\rho}(N)^{\sigma}$ (note that p < n). Moreover, for every $\rho \in N$, the bilinear form σ induces an isomorphism $J_{\rho}: T_{\rho}(T^*X)/T_{\rho}(N) \to T_{\rho}^*(F_{\rho})$ (see [6]).