Fukushima, M. and Lejan, Y. Osaka J. Math. 28 (1991), 837-845

ON QUASI-SUPPORTS OF SMOOTH MEASURES AND CLOSABILITY OF PRE-DIRICHLET FORMS

MASATOSHI FUKUSHIMA AND YVES LEJAN

(Received June 14, 1991)

1. Introduction

Consider a singular perturbation of the Laplacian Δ on the *d*-dimensional Euclidean space \mathbb{R}^d :

$$L=-\Delta+L_{
m r}$$
 .

Here L_{Γ} is a linear operator "living on" a closed subset $\Gamma \subset \mathbb{R}^d$ which might be of zero Lebesgue measure and as irregular as a fractal set. The problem is how and when we can give \hat{L} a proper sense. One way to formulate this is to introduce a perturbed bilinear form

$$\hat{\mathcal{E}}(f,g) = \boldsymbol{D}(f,g) + \mathcal{E}_{\mathbf{\Gamma}}(f|_{\mathbf{\Gamma}},g|_{\mathbf{\Gamma}}), \quad f,g \in C_0^{\infty}(R^d),$$

where D is the Dirichlet integral and \mathcal{E}_{Γ} is a closable pre-Dirichlet form on $L^2(\Gamma; \mu)$ for some positive Radon measure μ on Γ such that $C_0^{\infty}(\mathbb{R}^d)|_{\Gamma} \subset \mathcal{D}[\mathcal{E}_{\Gamma}]$. If $\hat{\mathcal{E}}$ is proven to be closable on $L^2(\mathbb{R}^d)$, the L^2 -space based on the Lebesgue measure dx, then the associated self-adjoint operator on $L^2(\mathbb{R}^d)$ may be thought of as a realization of \hat{L} .

Some sufficient conditions for the closability of the perturbed pre-Dirichlet form $\hat{\mathcal{E}}$ are known (M. Fukushima [2; §2.1], J.F. Brasche and W. Karwowski [1]). It is plausible that $\hat{\mathcal{E}}$ ought to be closable on $L^2(\mathbb{R}^d)$ under the sole potential theoretic assumption that μ charges no set of zero (Newtonian) capacity. A purpose of the present paper is to affirm this in a more general context as will be stated in §2 and proven in §4.

The proof in §4 involves the notion of the quasi-support of a measure and its characterization crucially. The quasi-notions have appeared in potential theory in diverse contexts. Another aim of the present paper is to show in §3 the existence of the quasi-support along with its useful characterizations in terms of classes of quasi-continuous functions.

This work was done during the stay of the first author in Europe in 1990 suported by EEC scientific fund