Kasue, A. and Washio, T. Osaka J. Math. 27 (1990), 899-928

GROWTH OF EQUIVARIANT HARMONIC MAPS AND HARMONIC MORPHISMS

Dedicated to Prof. Tadashi Nagano on his 60th birthday

ATSUSHI KASUE and TAKUMI WASHIO

(Received December 4, 1989)

0. Introduction

The purpose of the present paper is to study the growth of certain harmonic maps in relation with the geometry of the domains and ranges.

Let $\phi: M \rightarrow N$ be a harmonic map between complete noncompact Riemannian manifolds M and N. We fix a point o of M (resp. a point o' of N) and denote by r_M (resp. r_N) the distance to o in N (resp. o' in N). Set $\mu(\phi; t) :=$ $\max \{r_N(\phi(x)): x \in M, r_M(x) = t\}$. We want to know the growth of ϕ , or the asymptotic behavior of $\mu(\phi; t)$ as t goes to infinity. We first recall the following result by Cheng [8] (cf. also [3] [31: Chap. 6]): Suppose that M has nonnegative Ricci curvature and N is a Hadamard manifold, namely, N is a simply connected and nonpositively curved manofod manifold. Then the energy density $e(\phi)$ of the map ϕ satisfies: $e(\phi)(o) \leq c_m \mu(\phi; t)^2 t^2$, where c_m is a constant depending only on the dimension m of M. It follows that ϕ is a constant map if ϕ has sublinear growth, that is, $\liminf \mu(\phi; t)/t = 0$. We are interested in a (nonconstant) harmonic map $\phi: M \rightarrow N$ which has linear growth, namely, which has the property that $\limsup \mu(\phi; t)/t < +\infty$. For instance, it turns out that a harmonic map $\phi: M \to N$ of linear growth must be totally geodesic if M has volume growth of at most quadratic order (cf. [9]). It has been also proved in [24] that a d-closed harmonic 1-form of bounded length on M must be parallel if the sectional curvature of M is nonnegative and decays quadratically. Moreover Li and Tam [26] have shown that the dimension on the space of linear growth harmonic functions on M is less than or equal to k+1 if the volume of the metric ball of radius t around o is bounded by ct^{k} for some constant c.

On the other hand, we can construct a noncompact complete manifold M of positive Ricci curvature and a harmonic map $\phi_F \colon M \to F$ of bounded energy density from M onto a complete manifold F of nonnegative Ricci curvature (cf. Example in Section 2). It turns out from the construction that ϕ is a harmonic marphism from M onto F with totally geodesic fibers, namely, it is a