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0. Introduction

The purpose of the present paper is to study the growth of certain harmonic
maps in relation with the geometry of the domains and ranges.

Let ¢: M— N be a harmonic map between complete noncompact Rieman-
nian manifolds M and N. We fix a point o of M (resp. a point o’ of N) and
denote by 7, (resp. 7y) the distance to o in N (resp. o’ in N). Set u(p; t):=
max {ry(¢(x)): xE M, ry(x)=1t}. We want to know the growth of ¢, or the
asymptotic behavior of u(¢; ) as ¢ goes to infinity. We first recall the following
result by Cheng [8] (cf. also [3] [31: Chap. 6]): Suppose that M has nonnegative
Ricci curvature and N is a Hadamard manifold, namely, N is a simply connected
and nonpositively curved manofod manifold. Then the energy density e(¢) of
the map ¢ satisfies: e(¢)(0) <c,u(¢p: t)*#, where c, is a constant depending only
on the dimension 7 of M. It follows that ¢ is a constant map if ¢ has sublinear
growth, that is, HI:E rinf wr(p; £)/t=0. We are interested in a (nonconstant)

harmonic map ¢: M— N which has linear growth, namely, which has the pro-
perty that lim sup u(¢; t)/t<+4oco. For instance, it turns out that a harmonic
t-»oo

map ¢: M —> N of linear growth must be totally geodesic if M has volume growth
of at most quadratic order (cf. [9]). It has been also proved in [24] that a
d-closed harmonic 1-form of bounded length on M must be parallel if the sec-
tional curvature of M is nonnegative and decays quadratically. Moreover Li
and Tam [26] have shown that the dimension on the space of linear growth
harmonic functions on M is less than or equal to 241 if the volume of the metric
ball of radius ¢ around o is bounded by c#* for some constant c.

On the other hand, we can construct a noncompact complete manifold M
of positive Ricci curvature and a harmonic map ¢: M— F of bounded energy
density from M onto a complete manifold F of nonnegative Ricci curvature
(cf. Example in Section 2). It turns out from the construction that ¢ is a
harmonic marphism from M onto F with totally geodesic fibers, namely, it is a



