SINGULAR FOLIATIONS ON CROSS-SECTIONS OF EXPANSIVE FLOWS ON 3-MANIFOLDS

MASATOSHI OKA

(Received September 11, 1989)

1. Introduction

The notion of cross-sections is one of useful methods to investigate the behaviors of flows. H.B. Keynes and M. Sears [6] constructed a family of cross-sections and a first return map for a non-singular flow. In this paper we shall construct singular foliations on cross-sections invariant under the first return maps of flows furnishing expansiveness on three dimensional closed manifolds.

Recently K. Hiraide [5] showed the existence of invariant singular foliations for expansive homeomorphisms of closed surfaces. We shall construct singular foliations on cross-sections by using the method mentioned in [5]. However the first return maps are not continuous and we shall prepare supplementary tools to get our conclusion.

Let X be a closed topological manifold with metric d. By (X, \mathbf{R}) we denote a real continuous flow (abbrev. flow) without fixed points and the action of $t \in \mathbf{R}$ on $x \in X$ is written xt. (X, \mathbf{R}) is called an *expansive* flow if for any $\varepsilon > 0$ there exists $\delta > 0$ with the property that if $d(xt, yh(t)) < \delta$ ($t \in \mathbf{R}$) for a pair of points $x, y \in X$ and for an increasing homeomorphism $h: \mathbf{R} \to \mathbf{R}$ such that h(0) =0 and $h(\mathbf{R}) = \mathbf{R}$, then y = xt for some $|t| < \varepsilon$. Every non-trivial expansive flow has no fixed points (see [1]). Hereafter the natural numbers, the integers and the real number will be denoted by N, Z and \mathbf{R} respectively.

Let $SI = \{xt; x \in S \text{ and } t \in I\}$ for an interval I and $S \subset X$. A subset $S \subset X$ is called a *local cross-section* of time $\zeta > 0$ for a flow (X, \mathbf{R}) if S is closed and $S \cap x[-\zeta, \zeta] = \{x\}$ for all $x \in S$. If S is a local cross-section of time ζ , the action maps $S \times [-\zeta, \zeta]$ homeomorphically onto $S[-\zeta, \zeta]$. By the interior S^* of S we mean $S \cap \text{int} (S[-\zeta, \zeta])$. Note that $S^*(-\varepsilon, \varepsilon)$ is open in X for any $\varepsilon > 0$. Put $\varepsilon_0 = \inf \{t > 0; xt = x \text{ for some } x \in X\}$. Under the above assumptions and notations we have the following

Fact 1.1 ([6], Lemma 2.4). There is $0 < \zeta < \varepsilon_0/2$ satisfying that for each $0 < \alpha < \zeta/3$ we can find a finite family $S = \{S_1, S_2, \dots, S_k\}$ of pairwise disjoint local cross-sections of time ζ and diameter at most α and a family of local corss-