Kambara, H. Osaka J. Math. 27 (1990), 629–654

ON DIRECTLY FINITE REGULAR RINGS

Dedicated to Professor Manabu Harada on his sixtieth birthday

HIKOJI KAMBARA

(Received February 27, 1989)

This paper is concerned with the following open problem for directly finite, von Neuman regular rings. The problem was given by Goodearl and Handelman [3]: what conditions on a regular ring R induce that the maximal right quotient ring of R is right and left self-injective. In [4], the auther showed an example of directly finite, right self-injective regular ring which is not left self-injective. So we have an interest in this problem. In Theorem 17 in §3, we give necessary and sufficient conditions for this problem. In §2, we consider the maximal left quotient ring Q of a directly finite, right self-injective regular ring. We show that Q is directly finite (Theorem 7) and the factor ring Q/\mathcal{M} is the maximal left quotient ring of the factor ring R/m for every maximal ideal \mathcal{M} (resp. $\supset m$) of Q (resp. R) (Theorem 9). In §3, we give one generalization of a result in [5]: the maximal left quotient ring of a directly finite, right self-injective regular ring is left and right self-injective. Further we obtain necessary and sufficient conditions for the maximal right quotient ring of a regular ring to be directly finite (Theorem 16).

1. Preliminaries

All rings in this paper are associative with unit and ring homomorphisms are assumed to preserve the unit. A ring R is said to be *directly finite* if xy=1implies yx=1 for all $x, y \in R$. A ring is said to be *directly infinite* if R is not directly finite. A regular ring means von Neumann regular ring.

A rank function on a regular ring R is a map $N: R \rightarrow [0, 1]$ satisfying the following conditions:

- (a) N(1)=1,
- (b) $N(xy) \leq N(x)$ and $N(xy) \leq N(y)$ for all $x, y \in R$,
- (c) N(e+f)=N(e)+N(f) for all orthogonal idempotents $e, f \in \mathbb{R}$,
- (d) N(x) > 0 for all non-zero $x \in R$.

If R is a regular ring with a rank function N, then $\delta(x, y) = N(x-y)$ defines a metric on R, this metric δ is called N-metric or rank metric and the (Hausdorff)