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This paper is concerned with the following open problem for directly finite,
von Neuman regular rings. The problem was given by Goodearl and Handelman
[3]: what conditions on a regular ring R induce that the maximal right quotient
ring of R is right and left self-injective. In [4], the auther showed an example
of directly finite, right self-injective regular ring which is not left self-injective.
So we have an interest in this problem. In Theorem 17 in §3, we give neces-
sary and sufficient conditions for this problem. In §2, we consider the maximal
left quotient ring Q of a directly finite, right self-injective regular ring. We
show that Q is directly finite (Theorem 7) and the factor ring QIJM is the maxi-
mal left quotient ring of the factor ring R\m for every maximal ideal <3H (resp.
~D*n) of Q (resp. R) (Theorem 9). In §3, we give one generalization of a result
in [5]: the maximal left quotient ring of a directly finite, right self-injective
regular ring is left and right self-injective. Further we obtain necessary and
sufficient conditions for the maximal right quotient ring of a regular ring to be
directly finite (Theorem 16).

1. Preliminaries

All rings in this paper are associative with unit and ring homomorphisms
are assumed to preserve the unit. A ring R is said to be directly finite if xy=ί
implies yx=l for all x>y^R. A ring is said to be directly infinite if R is not
directly finite. A regular ring means von Neumann regular ring.

A rank function on a regular ring R is a map N: JR-̂ [O, 1] satisfying the
following conditions:

(a) ΛΓ(1)=1,
(b) N(xy)^N(x) and N(xy)^N(y) for all x,y(ΞRy

(c) N(e+f)=N(e)+N(f) for all orthogonal idempotents eJ&R,
(d) N(x)>0 for Άl non-zero x^R.

If R is a regular ring with a rank function Ny then 8(xyy)=N(x—y) defines a
metric on R, this metric δ is called N-metric or rank metric and the (Hausdorff)


