Lesigne, E. and Petersen, K. Osaka J. Math. 27 (1990), 277-280

BOUNDED EXPONENTIAL SUMS

EMMANUEL LESIGNE AND KARL PETERSEN

(Received July 31, 1989)

1. Introduction

T. Kamae has asked (personal communication) whether it is possible to find a sequence (a_k) of ± 1 's such that the sums

$$\sum_{k=m}^{m+n} a_k e^{-ik\theta}$$

stay bounded (for all integers m and n with $n \ge 0$) for all $\theta \in [-\pi, \pi)$ (with the bound possibly depending on θ). We show that there is no such sequence. In fact, the only such real-valued sequences must be "essentially zero" in a sense explained below.

This conclusion is reached by adopting a dynamical viewpoint, applying the Spectral Theorem, and showing that every nonzero element of L^2 must have nonzero mean power at some frequency. This latter observation is equivalent to the triviality of the intersection of all the spaces of "twisted coboundaries" for a unitary operator.

2. Results

Suppose that $a=(a_k)\in \mathbb{R}^{\mathbb{Z}}$ is a doubly infinite sequence with the property that

$$|\sum_{k=m}^{m+n} a_k e^{-ik\theta}| \le c(\theta) < \infty \quad \text{for all } m \in \mathbb{Z}, \text{ all } n \ge 0, \text{ and all } \theta \in [-\pi, \pi).$$

Taking $n=\theta=0$, we see that *a* is bounded and so takes values in a compact interval *I*. Let *X* denote the closure of the orbit of *a* under the shift transformation σ in the compact metric space I^z . Let μ be a shift-invariant Borel probability measure on *X*.

Given $x \in X$ and a block $B=b_0\cdots b_n$ which appears in x, we can find a block $D=d_0\cdots d_n$ in a such that $|b_i-d_i| < 1/(n+1)$ for $i=0, \dots, n$. Consequently

$$|\sum_{k=0}^{n} b_k e^{-ik\theta}| \leq c(\theta) + 1$$
 for all θ .

If $Tg = g \circ \sigma$ for $g \in L^2(X, \mu)$ and $f(x) = \pi_0 x = x_0$ for $x \in X$, we have then that