Suetake, C. Osaka J. Math. 27 (1990), 271-276

ON FINITE POINT TRANSITIVE AFFINE PLANES WITH TWO ORBITS ON I...

CHIHIRO SUETAKE

(Received June 2, 1989)

1. Introduction

Kallaher [3] proposed the following conjecture.

Conjecture. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π . If G has two orbits on the line at infinity, then one of the following statements holds:

- (i) The plane π is a translation plane, and the group G contains the group of translations of π .
- (ii) The plane π is a dual translation plane, and the group G contains the group of dual translations of π .

The purpose of this paper is to study this conjecture. When G_A has two orbits of length 1 and n on the line at infinity, where A is an affine point of π , some work has been done on this conjecture. (See Johnson and Kallaher [2].)

Our notation is largely standard and taken from [3]. Let $\mathcal{P}=\pi \cup l_{\infty}$ be the projective extention of an affine plane π , and G a collineation group of \mathcal{P} . If P is a point of \mathcal{P} and l is a line of \mathcal{P} , then G(P, l) is the subgroup of G consisting of all perspectivities in G with center P and axis l. If m is a line of \mathcal{P} , then G(m, m) is the subgroup consisting of all elations in G with axis m.

In § 2 we prove the following theorem.

Theorem 1. Let π be a finite affine plane of order n with a collineation group G and let Δ be a subset of l_{∞} such that $|\Delta|=t\geq 2$, (n, t)=1 and (n, t-1)=1. If there is an integer $k_1>1$ such that $|G(P, l_{\infty})|=k_1$ for all $P\in\Delta$ and there is an integer $k_2>1$ such that $|G(Q, l_{\infty})|=k_2$ for all $Q\in l_{\infty}-\Delta$, then π is a translation plane, and G contains the group T of translations of π .

In § 3 and § 4, we prove the following theorem by using Theorem 1.

Theorem 2. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π . If G has two orbits of length 2 and n-1 on l_{∞} , then one of the following statements holds: