Fujita, T. Osaka J. Math. 27 (1990), 229-245

ON DEL PEZZO FIBRATIONS OVER CURVES

TAKAO FUJITA

(Received May 15, 1989)

Introduction

Let $f: M \to C$ be a proper surjective holomorphic mapping of complex manifolds M, C with dim $M=n+1\geq 3$, dim C=1 and let L be an f-ample line bundle on M. Such a quadruple (f, M, C, L) will be called a *Del Pezzo* fibration if (M_x, L_x) is a Del Pezzo manifold for any general point x on C, where $M_x=f^{-1}(x)$ and L_x is the restriction of L to M_x . This means K+(n-1)L=0in Pic (M_x) for the canonical bundle K of M.

Let me explain how such a fibration appears in the classification theory of polarized manifolds. Suppose that L is an ample line bundle on a compact complex manifold M with dim M=m. Then we have the following result (cf. **[F7]**):

Fact 1. K+mL is nef (i.e. $(K+mL) Z \ge 0$ for any curve Z in M) unless $(M, L) \simeq (\mathbf{P}^m, \mathcal{O}(1))$. So K+tL is nef for any $t \ge m+1$.

Fact 2. K+(m-1) L is nef unless $(M, L) \simeq (\mathbf{P}^m, \mathcal{O}(1))$, a hyperquadric in \mathbf{P}^{m+1} with $L=\mathcal{O}(1)$, $(\mathbf{P}^2, \mathcal{O}(2))$ or a scroll over a smooth curve.

For a vector bundle \mathcal{E} over X, the pair ($\mathbf{P}(\mathcal{E})$, $\mathcal{O}(1)$) is called the *scroll* of \mathcal{E} (or a scroll over X).

Fact 3. Suppose that K+(m-1)L is nef and $m \ge 3$. Then K+(m-2)L is nef except the following cases :

a) There is an effective divisor E on M such that $(E, L_E) \simeq (\mathbf{P}^{m-1}, \mathcal{O}(1))$ and the normal bundle of E is $\mathcal{O}(-1)$.

b0) (M, L) is a Del Pezzo manifold, (\mathbf{P}^3 , $\mathcal{O}(j)$) with j=2 or 3, (\mathbf{P}^4 , $\mathcal{O}(2)$) or a hyperquadric in \mathbf{P}^4 with $L=\mathcal{O}(2)$.

b1) There is a fibration $f: M \to C$ over curve C such that (M_x, L_x) is a hyperquadric in \mathbf{P}^m with $L = \mathcal{O}(1)$ or $(\mathbf{P}^2, \mathcal{O}(2))$ for any general point x on C.

Research partially supported by Grant in Aid for Co-operative Research 01302001, The Ministry of Education, Science and Culture