ON THE SMALLEST PAIRWISE SUFFICIENT SUBFIELD IN THE MAJORIZED STATISTICAL EXPERIMENT

JUNJI FUJII

(Received July 15, 1988)

1. Introduction

In the present paper, we discuss the question of the existence of the smallest pariwise sufficient subfield in majorized statistical experiments.

Let $\mathcal{E}=(X, \mathcal{A}, \mathcal{P})$ be a statistical experiment, i.e. X be a set, \mathcal{A} a σ -field of subsets of X and \mathcal{P} a family of probability measures on \mathcal{A} .

Assume, throughout the present paper, that there exists a "majorizing" measure μ on \mathcal{A} , with respect to which each P in \mathcal{P} has an \mathcal{A} -measurable density $dP/d\mu$. Accordingly, \mathcal{E} is called a majorized experiment.

For each $P \in \mathcal{P}$, $S_P = \{x \in X; dP/d\mu(x) > 0\}$ is called an \mathcal{E} -support of P. We notice that S_P is uniquely determined up to a \mathcal{P} -null set and satisfies (1) $P(S_P)=1$, and (2) if $N \subset S_P$ and P(N)=0, then N is \mathcal{P} -null (see section 2). Conversely, if each P has an $S_P \in \mathcal{A}$ satisfying (1) and (2), then, not only \mathcal{E} is majorized, but it has an "equivalent majorizing measure" ν , that is, all the \mathcal{P} -null sets are ν -null (see [4] Lemma 9.3). Consequently, every majorized experiment has an equivalent majorizing measure.

A sub σ -field $\mathcal{B}(\text{or simply a subfield})$ of \mathcal{A} , ahich is pairwise sufficient and contains a version of the support S_P for all P in \mathcal{P} is called PSS (*pairwise sufficient with supports*). This is a concept in between the usual concepts of sufficiency and pairwise sufficiency. All the three concepts coincide with each other in case \mathcal{E} is dominated. In each of the classes of the pairwise sufficient, PSS and the sufficient subfields, the smallest and the minimal subfields are defined as follows.

For two subfields \mathcal{B}, \mathcal{C} of \mathcal{A} , we write $\mathcal{B} \subset \mathcal{C}[\mathcal{P}]$ if $\mathcal{B} \subset \mathcal{C} \lor \mathcal{I}_{\mathcal{P}}$, the latter being the subfield generated by \mathcal{C} and all the \mathcal{P} -null sets. If $\mathcal{B} \subset \mathcal{C}[\mathcal{P}]$ and $\mathcal{C} \subset \mathcal{B}[\mathcal{P}]$, we write $\mathcal{B} = \mathcal{C}[\mathcal{P}]$.

A pairwise sufficient (resp. PSS, sufficient) subfield \mathcal{B} is called *smallest* if $\mathcal{B} \subset \mathcal{C}[\mathcal{P}]$ for every pairwise sufficient (resp. PSS, sufficient) subfield \mathcal{C} . A pairwise sufficient (resp. PSS, sufficient) subfield \mathcal{B} is called *minimal* if for every pairwise sufficient (resp. PSS, sufficient) subfield \mathcal{C} with $\mathcal{B} \subset \mathcal{C}[\mathcal{P}]$, it holds that $\mathcal{B} = \mathcal{C}[\mathcal{P}]$.