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ON THE SMALLEST PAIRWISE SUFFICIENT SUBFIELD
IN THE MAJORIZED STATISTICAL EXPERIMENT
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1. Introduction

In the present paper, we discuss the question of the existence of the smal-
lest pariwise sufficient subfield in majorized statistical experiments.

Let β=(X, Jl, 3?) be a statistical experiment, i.e. X be a set, Jl a cr-field
of subsets of X and 3? a family of probability measures on <JL.

Assume, throughout the present paper, that there exists a "majorizing"

measure μ on <Jl, with respect to which each P in & has an ^-measurable den-
sity dPjdμ. Accordingly, G is called a majorized experiment.

For each Pe^, SP={x^X\ dP/dμ(x)>0} is called an δ-support of P.
We notice that SP is uniquely determined up to a ίP-null set and satisfies (1)
P(SP)=1, and (2) if NdSP and P(N)=Q, then N is 5>-null (see section 2).
Conversely, if each P has an SP^<Λ satisfying (1) and (2), then, not only Q is
majorized, but it has an "equivalent majorizing measure" vy that is, all the ίP-null
sets are z>-null (see [4] Lemma 9.3). Consequently, every majorized experiment
has an equivalent majorizing measure.

A sub σ-field .S(or simply a subfield) of Jl, ahich is pairwise sufficient and
contains a version of the support SP for all P in 3* is called PSS (pairwise suffici-
ent with supports). This is a concept in between the usual concepts of sufficiency
and pairwise sufficiency. All the three concepts coincide with each other in
case 6 is dominated. In each of the classes of the pairwise sufficient, PSS and
the sufficient subfields, the smallest and the minimal subfields are defined as
follows.

For two subfields &, C of JLy we write $dC[£>] if -®c£V22s>, the latter
being the subfield generated by C and all the £P-null sets. If -Sc£[ίP] and

we write «β=C[S>].
A pairwise sufficient (resp. PSS, sufficient) subfield 3$ is called smallest if

for every pairwise sufficient (resp. PSS, sufficient) subfield C. A
pairwise sufficient (resp. PSS, sufficient) subfield IB is called minimal if for every
pairwise sufficient (resp. PSS, sufficient) subfield C with jSc£[ίP], it holds that


