Kobayashi, M. Osaka J. Math. 26 (1989), 347–366

ORIENTATION REVERSING INVOLUTIONS ON CLOSED 3-MANIFOLDS

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

MASAKO KOBAYASHI

(Received June 8, 1988)

1. Introduction.

Let M be a closed connected oientable 3-manifold admitting an oreintation reversing involtuion τ (i.e. $\tau^2 = \text{identity}$ and $\tau_*([M]) = -[M]$ for the fundamental class [M] of M).

By Smith theory, each component of the fixed point set of τ , Fix (τ, M) , is a point or a closed surface and $\chi(\text{Fix}(\tau, M)) \equiv 0 \pmod{2} (\chi(X)$ is the Euler characteristic of X). A. Kawauchi [5] proved that for any (M, τ) , Tor $H_1(M; \mathbb{Z}) \cong A \oplus A$ or $\mathbb{Z}_2 \oplus A \oplus A$ for some abelian group A, and that $\operatorname{rank}_{\mathbb{Z}_2} H_1(\operatorname{Fix}(\tau, M); \mathbb{Z}_2) \equiv 0 \pmod{2}$ if and only if Tor $H_1(M; \mathbb{Z}) \cong A \oplus A$. J. Hempel has proved in [3] that if Fix (τ, M) is empty or contains a closed orientable surface of positive genus, then the first Betti number of M is greater than zero. He has also shown in [4] that if $\pi_1(M)$ is not isomorphic to {1} or and \mathbb{Z}_2 is not virtually representable to \mathbb{Z} , then Fix (τ, M) consists of a 2-sphere or two points, or contains a projective plane.

The auther gave a characterization of $Fix(\tau, M)$ when M is a rational homoogy 3-sphere in [6] and, for a general M, an inequality on the first Betti numbers of M and $Fix(\tau, M)$ in [7]. In this paper we give a complete characterization of the topological type of $Fix(\tau, M)$ for a general M.

NOTATIONS. For a space X, let $\beta_i(X)$ denote the *i*th Betti number and $\beta_i(X; \mathbf{Z}_2)$ the \mathbf{Z}_2 -coefficient Betti number. For a group G, let $\beta_1(G) = \operatorname{rank}_{\mathbf{Z}} H_1(G; \mathbf{Z})$ and $\beta_1(G; \mathbf{Z}_2) = \operatorname{rank}_{\mathbf{Z}_2} H_1(G; \mathbf{Z}_2)$.

First, we classify (M, τ) into two types.

Proposition 1. For any (M, τ) , one of the following holds: (1) $M - \text{Fix}(\tau, M)$ consists of two components and $\text{Fix}(\tau, M)$ is a closed orientable 2-manifold.

(2) $M - \operatorname{Fix}(\tau, M)$ is connected.

For each type of (M, τ) , we shall prove the following: