Minami, H. Osaka J. Math. 26 (1989), 299-318

THE REAL K-GROUPS OF SO(n) FOR $n \equiv 2 \mod 4$

Dedicated to Professer Shoro Araki on his sixtieth birthday

HARUO MINAMI

(Received May 6, 1988)

In [9], [10] we studied the algebra $KO^*(SO(n))$ for $n \equiv 0, 1, 3 \mod 4$ using an idea of [7]. We first showed that a map from $P^{n-1} \times \operatorname{Spin}(n)$ to SO(n) introduced in [7] to compute $K^*(SO(n))$ also induces a monomorphism in KO-theory

$$I: KO^*(SO(n)) \to KO^*(P^{n-1} \times \operatorname{Spin}(n)).$$

As in [7] using this embedding enabled us to compute $KO^*(SO(n))$ from $KO^*(P^{n-1} \times \text{Spin}(n))$ whose structure can be obtained from the results of [1], [6], [12], [11].

The purpose of this note is to consider the remaining case, that is, KO^* (SO(n)) for $n \equiv 2 \mod 4$. However, in the present case, the analogous homomorphism I is not a monomorphism. This must come from the fact that the simple spin representations of Spin(n) are neither real nor quaternionic representations. To determine the kernel and image of I so we make use of our results on the algebra structure of $KO^*(SO(n))$ for $n \equiv 1 \mod 4$.

1. $KO^*(P^{n-1} \times \operatorname{Spin}(n))$

Throughout this note we regard KO and K as Z_8 -graded cohomology functors using the Bott periodicity. Let $\eta_1 \in KO^{-1}(+)$ and $\eta_4 \in KO^{-4}(+)$ be generators of $KO^*(+)$ satisfying the relations $2\eta_1 = \eta_1^3 = \eta_1 \eta_4 = 0$, $\eta_4^2 = 4$ and $\mu \in K^{-2}(+)$ denote the Bott class satisfying the relation $\mu^4 = 1$ (+=point).

Let c and r denote the complexification and realification homomorphisms. According to [3] we then have a useful exact sequence

(1.1)
$$\cdots \to KO^{1-q}(X) \xrightarrow{\chi} KO^{-q}(X) \xrightarrow{c} K^{-q}(X) \xrightarrow{\delta} KO^{2-q}(X) \to \cdots$$

which connects KO with K where χ is multiplication by η_1 and δ is given by $\delta(\mu x) = r(x)$ for $x \in K^{2-q}(X)$.

We also assume that

$$n \equiv 2 \mod 4$$
 and $a = \frac{n-2}{2}$