Johnson, N. L. Osaka J. Math. 26 (1989) 281-285

SEMIFIELD PLANES OF CHARACTERISTIC p ADMITTING p-PRIMITIVE BAER COLLINEATIONS

NORMAN L. JOHNSON

(Received May 25, 1988)

1. Introduction

Let π denote a semifield plane of order q^2 and kernel $K \simeq GF(q)$ where q is a prime power p^r . We shall say that π admits a *p*-primitive Baer collineation σ if and only if σ is a collineation which fixes a Baer subplane pointwise and $|\sigma|$ is a *p*-primitive divisor of q-1 (i.e. $|\sigma||q-1$ but $\not\prec p^i-1$ for $1 \le i < r$).

The main result of this article is essentially that p-primitive Baer collineations are easy to come by and the class of such semifield planes characterize *all* dimension two semifield planes.

Theorem 2.1. The class of semifield planes of dimension two and characteristic p which admit a p-primitive Baer collineation is equivalent to the general class of semifield planes of dimension two and characteristic p (either class constructs the other).

NOTATION 1.1. Let π be any semifield plane of order q^2 and kernel $\geq K \cong GF(q)$ (π could be Desarguesian). Represent $\pi = \{(x_1, x_2, y_1, y_2) | x_i, y_i \in K, i=1, 2\}$, $x=(x_1, x_2)$, $y=(y_1, y_2)$, $\mathcal{O}=(0, 0)$. If $x=\mathcal{O}$ is a shears axis then the spread for π takes the following form $x=\mathcal{O}$, $y=x\begin{bmatrix} \alpha, \beta \\ \overline{g}(\alpha, \beta), h(\alpha, \beta) \end{bmatrix}$ where \overline{g} , h are biadditive maps (a function $f: K \times K \to K$ is biadditive $\Leftrightarrow f(\alpha, \beta) + f(\delta, \gamma) = f(\alpha+\delta, \beta+\gamma)$).

(1.2) Extensions of π . (See Hiramine et al. [2] and Johnson [3])

With the notation of (1.1), extend K by t so that $K[t] \simeq GF(q^2)$ and $t^2 = t\theta + \rho$ for $\theta, \rho \in K$.

Define $g(\alpha, \beta) = \overline{g}(\alpha, \beta) + \theta h(\alpha, \beta)$. Further define $f(\alpha + \beta t) = g(\alpha, \beta) - h(\alpha, \beta)t$ for all $\alpha, \beta \in K$. Then (Johnson [3] (3.1)) $x = \mathcal{O}, y = x \begin{bmatrix} \alpha, \beta \\ \overline{g}(\alpha, \beta), h(\alpha, \beta) \end{bmatrix}$ represents the spread for π if and only if

$$x = \mathcal{O}, \ y = x \begin{bmatrix} \delta + \gamma t, & lpha + eta t \\ g(lpha, eta) - h(lpha, eta)t, \ (\delta + \gamma t)^q \end{bmatrix} = \begin{bmatrix} u, & v \\ f(v), & u^q \end{bmatrix},$$