ON DOMINANT DIMENSION OF NOETHERIAN RINGS

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

MITSUO HOSHINO

(Received April 25, 1988)

Throughout this note, R stands for a ring with identity and all modules are unital modules. In this note, for a given module M, we say that M has dominant dimension at least n, written dom dim $M \ge n$, if each of the first n terms of the minimal injective resolution of M is flat. Following Morita [5], we call R left (resp. right) QF-3 if dom dim R $R \ge 1$ (resp. dom dim R $R \ge 1$). He showed that if R is left noetherian and left QF-3 then it is also right QF-3. Thus, if R is left and right noetherian, R is left QF-3 if and only if it is right QF-3. Generalizing this, we will prove the following

Theorem. Let R be left and right noetherian. For any $n \ge 1$, dom dim ${}_{R}R \ge n$ if and only if dom dim $R_{R} \ge n$.

In case R is artinian, our dominant dimension coincides with Tachikawa's one [8], and the above theorem has been established (see Tachikawa [9] for details).

In what follows, for a given left or right R-module M, we denote by M^* the R-dual of M, by $\mathcal{E}_M: M \to M^{**}$ the usual evaluation map and by E(M) the injective hull of M. We denote by mod R (resp. mod R^{op}) the category of all finitely generated left (resp. right) R-modules, where R^{op} stands for the opposite ring of R and right R-modules are considered as left R^{op} -modules.

- 1. Preliminaries. In this section, we recall several known facts which we need in later sections.
- **Lemma 1.1.** Let R be right noetherian. For any $N \in \text{mod } R^{op}$ and for any injective left R-module E, Hom_R (Ext $_R^i$ (N, R), E)= Tor_i^R (N, E) for $i \geq 1$.

Proof. See Cartan and Eilenberg [1, Chap. VI, Proposition 5.3].

Lemma 1.2. Every finitely presented submodule of a flat module is torsionless.

Proof. See Lazard [4, Théorème 1.2].

Lemma 1.3. Let R be right noetherian. Let E be an injective left R-module