Tanaka, M. Osaka J. Math. 26 (1989), 253–264

ON CHARACTER CORRESPONDENCES IN π -SEPARABLE GROUPS

Dedicated to Professor Tuyosi Oyama on his 60th birthday

MASAKI TANAKA

(Received March 30, 1988)

1. Introduction

Let A and G be finite groups and suppose A acts on G by automorphisms. We denote by $\operatorname{Irr}(G)$ the set of ordinary (complex) irreducible characters of G. For a prime p, $\operatorname{IBr}_p(G)$ denotes the set of all irreducible Brauer characters of G with respect to p. If φ is a class function of G and $a \in A$, φ^a , defined by $\varphi^a(g^a) = \varphi(g)$ for $g \in G$, is again a class function. For a set S of class functions of G which is stable under the action of A, we write S_A to denote the set of all A-invariant elements of S. Let π be a set of prime numbers and let π' be the set of primes complementary to π . For $\chi \in \operatorname{Irr}(G)$, we denote by $\hat{\chi}$ the restriction of χ to the set \hat{G} of all π -elements of G. If $\hat{\chi}$ can not be written in the form $\hat{\chi} = \hat{\zeta} + \hat{\psi}$ with ordinary characters ζ , ψ of G, then we say that χ is π -irreducible and that $\hat{\chi}$ is a π -irreducible character of G. We denote the set of all π -irreducible characters of G by $I_{\pi}(G)$. We say that G is π -separable if every composition factor of G is either a π -group or a π' -group.

For a π -separable group G, Isaacs [8] considered the vector space c.f. (\hat{G}) of all complex-valued class functions defined on \hat{G} and showed that $I_{\pi}(G)$ is a basis of c.f. (\hat{G}) which has the following properties.

(1) If $\chi \in Irr(G)$, then $\hat{\chi}$ is a nonnegative integer linear combination of elements of $I_{\pi}(G)$.

(2) If $\varphi \in I_{\mathfrak{a}}(G)$, then $\varphi = \hat{\chi}$ for some $\chi \in Irr(G)$. These imply that $I_{\mathfrak{a}}(G)$ behaves as a π -generalization of Brauer characters.

Now assume that A acts on G by automorphisms and (|A|, |G|) = 1. Under the assumption that A is solvable, Glauberman [2] established a natural bijection from $Irr(G)_A$ onto $Irr(C_G(A))$. If A is non-solvable, then |A| is even by the Odd-order Theorem and hence |G| is odd. In that case, Isaacs [4] showed that there also exists a similar bijection from $Irr(G)_A$ onto $Irr(C_G(A))$.

On the other hand, Uno [10] studied a character correspondence between Brauer characters. He proved that if G is *p*-solvable, then there exists a bijection from $\operatorname{IBr}_p(G)_A$ onto $\operatorname{IBr}_p(C_G(A))$ and this has similar properties as those of