Tamura, H. Osaka J. Math. 25 (1988), 633-647

ASYMPTOTIC DISTRIBUTION OF EIGENVALUES FOR SCHRÖDINGER OPERATORS WITH HOMOGENEOUS MAGNETIC FIELDS

HIDEO TAMURA

(Received April 20, 1987)

1. Introduction

We consider the Schrödinger operator for one particle subjected to an external potential -V(x), $x=(x_1, x_2, x_3) \in \mathbb{R}^3_x$, and a homogeneous magnetic field of magnitude b>0 along the x_3 axis. Under a suitable normalization of units, this operator is described in the following form:

$$H = (D_1 - bx_2/2)^2 + (D_2 + bx_1/2)^2 + D_3^2 - V(x), \quad D_i = -i\partial/\partial x_i.$$

If $V(x) \to 0$ as $|x| \to \infty$, then *H* has essential spectrum beginning at *b* and discrete spectrum below the bottom b([1]). We denote by $N(\lambda)$, $\lambda > 0$, the number of eigenvalues less than $b-\lambda$ of *H* with repetitoin according to multiplicities. The aim of this paper is to study the asymptotic behavior as $\lambda \to 0$ of $N(\lambda)$ when *H* has an infinite number of eigenvalues below the bottom *b* of essential spectrum.

We assume V(x) to satisfy the following

Assumption $(V)_m$. (i) V(x) is positive and C^1 -smooth. (ii) There exists m>0 such that

 $C^{-1}\langle x \rangle^{-m} \leq V(x) \leq C \langle x \rangle^{-m}, \qquad C > 1,$

and $|\partial V/\partial x_j| \leq C_j \langle x \rangle^{-m-1}$, where $\langle x \rangle = (1+|x|^2)^{1/2}$.

We now formulate the main theorem. Under the above assumption, H is essentially self-adjoint in $C_0^{\infty}(R_x^3)$. We denote by the same notation H its self-adjoint realization in $L^2(R_x^3)$.

Theorem 1. Assume $(V)_m$ and denote by $N(\lambda)$, $\lambda > 0$, the number of eigenvalues less than $b - \lambda$ of H.

(i) If 0 < m < 2, then

(1.1)
$$N(\lambda) = N_0(\lambda; V)(1+o(1)), \quad \lambda \to 0,$$