Kamal, M.A. and Müller, B.J. Osaka J. Math. 25 (1988), 531-538

EXTENDING MODULES OVER COMMUTATIVE DOMAINS

MAHMOUD A. KAMAL AND BRUNO J. MÜLLER

(Received June 15, 1987)

1. Introduction

A module is extending (or has the property (C_1)) if every complement submodule is a direct summand. We prove that a module over a commutative domain has this property, if and only if it is either torsion with (C_1) , or the direct sum of a torsion free reduced module with (C_1) and an arbitrary injective module. The torsion case is dealt with in [6], where we also give some background and references. Here we show that a torsion free reduced module is extending if and only if it is a finite direct sum of uniform submodules, each pair of which is extending. As an application we obtain a description of all extending modules over Dedekind domains. In a subsequent paper [7] we shall discuss the extending property for direct sums of pairs of uniform modules in general.

Throughout this paper R will be a commutative domain with quotient field K. $X \subset M$ and $Y \subset M$ denote that X is an essential submodule, and Y is a direct summand, of M.

A submodule N of a module M has no proper essential extension in M, if and only if there is another submodule N' such that N is maximal with respect to $N \cap N'=0$. Such submodules N are called closed, or complements.

2. Reduction to Torsionfree Reduced Modules

Theorem 1. Let M be a right module over an arbitrary ring R, and let $Z_2(M)$ denote its second singular submodule. Then M is extending if and only if $M=Z_2(M)\oplus N$, where $Z_2(M)$ and N are extending and $Z_2(M)$ is N-injective.

Proof. Since $Z_2(M)$ is closed in M, by (C_1) , we have $M = Z_2(M) \oplus N$, where N is non-singular. Since (C_1) is inherited by direct summands, $Z_2(M)$ and N have (C_1) .

To show that $Z_2(M)$ is N-injective, let $\phi: X \to Z_2(M)$ be a homomorphism from a submodule X of N. Consider $X' := \{x - \phi(x) : x \in X\}$. By (C_1) , there exists $X' \subset X^* \subset M$. Write $M = X^* \oplus Y$. Since $X' \cap Z_2(M) = 0$ and since $X' \subset X^*$, it follows that X^* is non-singular and that $Z_2(M) = Z_2(Y)$. Hence, by