LOGARITHMIC DEL PEZZO SURFACES OF RANK ONE WITH CONTRACTIBLE BOUNDARIES

DE-QI ZHANG

(Received February 4, 1987)

Contents

Introduction

- 1. Preliminaries
- 2. The decomposition of D
- 3. Structure theorem in the case $|C+D+K_v| \neq \phi$
- 4. Preparations for the case $|C+D+K_v| = \phi$
- 5. Structure theorem in the case $|C+D+K_v| = \phi$, the part (I)
- 6. Structure theorem in the case $|C+D+K_v| = \phi$, the part (II)
- 7. Normal surfaces P^2/G

Introduction. Let k be an algebraically closed field of characteristic zero. Consider a pair (V, D) where V is a nonsingular projective rational surface and D is a reduced effective divisor with only simple normal crossings. We employ the terminology and notations in MT [7 and 8]. By MT [7; Lemma 2.1], there exists a birational morphism $u: (V, D) \rightarrow (\tilde{V}, \tilde{D})$ such that $u_*D = \tilde{D}, (\tilde{V}, \tilde{D})$ is almost minimal and $\bar{\kappa}(V-D) = \bar{\kappa}(\tilde{V}-\tilde{D})$. In particular, if $\tilde{V}-\tilde{D}$ is affine-ruled, so is V-D. The divisor $D+K_V$ can be decomposed into $D+K_V=(D^{\sharp}+K_V)+Bk(D)$ (cf. MT [7; §1.5]). Suppose hereafter that (V, D) is almost minimal. Then $\bar{\kappa}(V-D) \ge 0$ iff $D^{\sharp}+K_V$ is numerically effective (cf. MT [7; §1.12]). In this case $D+K_V=(D^{\sharp}+K_V)+Bk(D)$ is nothing but the Zariski decomposition.

By Theorem 2.11 in MT[7] and by Main Theorem and Theorem 7 in MT[8], on the case where $\bar{\kappa}(V-D) = -\infty$, V-D is affine-uniruled except the unknown case where (V, D) is a logarithmic del Pezzo surface of rank one with contractible boundaries (cf. Definition 1.1 below). Professor M. Miyanishi conjectured

Conjecture (1) (the weaker form). If (V, D) is a log del Pezzo surface of rank one with contractible boundaries then V-D is affine-uniruled.

Conjecture (2). Let (V, D) be the same as in the conjecture (1). Then there exists a finite subgroup G of PGL(2, k)=Aut_k(P^2) such that \bar{V} is isomor-