ON A RELATION BETWEEN HIGHER ORDER ASYMPTOTIC RISK SUFFICIENCY AND HIGHER ORDER ASYMPTOTIC SUFFICIENCY IN A LOCAL SENSE

TAKERU SUZUKI

(Received November 26, 1986) (Revised May 7, 1987)

1. Introduction. In Takeuchi [4] higher order asymptotic risk sufficiency of maximum likelihood estimator has been discussed. In this paper we try to find some relations between asymptotic risk sufficiency with a special loss function and asymptotic sufficiency in a local sense.

Let $\mathcal{P}_n = \{P_{\theta,n}; \theta \in \Theta\}$ be a family of probability distributions on a measurable space $(\mathcal{X}, \mathcal{A}_n)$ with an index set Θ which is a subset of an Euclidean space with the usual norm $|\cdot|$. For a sub σ -field \mathcal{C} of \mathcal{A}_n , real number $c \ge 0$ and $\theta, \theta' \in \Theta$ let $r_n^{\mathcal{C}}(c:\theta, \theta') = \inf (1+c)^{-1} \{1-E_{P_{\theta,n}}(\phi)+cE_{P_{\theta',n}}(\phi); \phi \text{ are } \mathcal{C}\text{-measurable statis$ $tical test functions on <math>\mathcal{X}\}$. We note that $r_n^{\mathcal{C}}(c:\theta, \theta')$ means the Bayes risk of statistical problem of testing a hypothesis $P_{\theta',n}$ is true' against an alternative $P_{\theta,n}$ is true' with experiment $(\mathcal{X}, \mathcal{C}, \{P_{\theta',n}, P_{\theta,n}\})$ relative to a prior probability distribution (c/(1+c), 1/(1+c)) on $\{\theta', \theta\}$ provided that the loss function is simple.

Let $\{\mathcal{B}_n; n=1, 2, \cdots\}$ be a sequence of sub σ -fields of $\{\mathcal{A}_n\}(\mathcal{B}_n \subset \mathcal{A}_n)$. In this paper we give a sufficient condition about the Bayes risk $r_n^{\mathcal{B}_n}$ for $\{\mathcal{B}_n\}$ to be higher order locally asymptotically sufficient sequence of σ -fields. More precisely our main result in this paper is the following: Under some conditions if for some positive number α sup sup $\sup_{c>0} \sup_{\theta^* \in K} \sup_{\theta^* : n^{1/2}} \sup_{|\theta - \theta^*| \leq b} \{r_n^{\mathcal{B}_n}(c; \theta, \theta^*) -$

 $r_n^{\mathcal{A}_n}(c:\theta,\theta^*) = o(n^{-\alpha})$ for every b>0 and every compact subset K of Θ , then for every β satisfying $0 < \beta < 3^{-1}\alpha \{\mathcal{B}_n\}$ is locally asymptotically sufficient for $\{\mathcal{P}_n\}$ with order $o(n^{-\beta})$ in the sense that for each $n=1, 2, \cdots$ and each $\theta_0 \in \Theta$ there exists a family $\{Q_{\theta,n}^{\theta_0}; \theta \in \Theta\}$ of probability distributions on $(\mathcal{X}, \mathcal{A}_n)$ for which \mathcal{P}_n is sufficient σ -field and that for every b>0

$$\sup_{\theta: n^{1/2}|\theta-\theta_0| \leq b} ||P_{\theta,n} - Q_{\theta,n}^{\theta_0}||_{\mathcal{A}_n} = o(n^{-\beta})$$

uniformly in θ_0 over every compact subsets of Θ . Here $\|\cdot\|_{\mathcal{A}_n}$ means the total variation norm over \mathcal{A}_n .

We have discussed such a problem in the case $\alpha = \beta = 0$ in Suzuki [3] under