EINSTEIN-KÄHLER FORMS, FUTAKI INVARIANTS AND CONVEX GEOMETRY ON TORIC FANO VARIETIES

Тознікі МАВИСНІ

(Received July 25, 1986)

0. Introduction

Throughout this paper, we assume that X is a nonsingular *n*-dimensional toric Fano variety (defined over C), i.e., X is an *n*-dimensional connected projective algebraic manifold satisfying the following conditions:

- (a) X admits an effective almost homogeneous algebraic group action of $(G_m)^n$ $(\simeq (C^*)^n$ as a complex Lie group).
- (b) The set \mathcal{K} of all Kähler forms on X in the de Rham cohomology class $2\pi c_1(X)_R$ is non-empty.

For each $\omega \in \mathcal{K}$, by writing it as $\omega = \sqrt{-1} \sum g(\omega)_{\alpha\beta} dz^{\beta} \wedge dz^{\beta}$ in terms of holomorphic local coordinates (z^1, z^2, \dots, z^n) of X, we have the corresponding Ricci form Ric(ω) cohomologous to ω :

$$\operatorname{Ric}(\omega) := \sqrt{-1} \,\overline{\partial} \partial \, \log \, \det(g(\omega)_{\alpha \overline{\beta}}) \,.$$

Then an element ω of \mathcal{K} is called an Einstein-Kähler form if $\operatorname{Ric}(\omega) = \omega$. We now pose the following:

Problem 0.1*). Classify all X which admit, at least, one Einstein-Kähler form.

Obviously, the Fubini-Study form on $P^{n}(C)$ is a typical Einstein-Kähler form. This settles Problem 0.1 for n=1, because the only possible X with n=1 is $P^{1}(C)$. However, the real difficulty comes up even at n=2: Let S_{i} be the projective algebraic surface obtained from $P^{2}(C)$ by blowing up *i* points in general position (where $1 \leq i \leq 3$). Then, in spite of lots of efforts by differential geometers, it is still unknown whether or not the nonsingular toric Fano variety S_{a} admits an Einstein-Kähler form.

The purpose of this paper is to give a brief survey of recent progress on Problem 0.1 together with our related new results. Especially, in Sections $1\sim6$

^{*)} This is also posed by T. Oda and Y.T. Siu.