Uno, K. Osaka J. Math. 24 (1987), 409-415

ON THE SEQUENCES INDUCED FROM AUSLANDER-REITEN SEQUENCES

Dedicated to Professor Hirosi Nagao on his 60th birthday

KATSUHIRO UNO

(Received March 3, 1986)

0. Introduction

Let kG be the group algebra of a finite group G over an algebraically closed field k of characteristic $p, p \neq 0$. Fix a normal subgroup N of G and a non-projective indecomposable kN-module V. Let $SV: 0 \rightarrow \Omega^2 V \rightarrow X \rightarrow V \rightarrow 0$ be the Auslander-Reiten sequence terminating at V. Here Ω denotes the Heller operator. In this paper, we study the induced sequence $0 \rightarrow (\Omega^2 V)^c \rightarrow X^c \rightarrow V^c \rightarrow 0$. We shall decompose it according to the decomposition of V^c and investigate the relation between the sequences appearing in the decomposition and the Auslander-Reiten sequences terminating at the indecomposable direct summands of V^c . For example, we shall give a condition which guarantees that some Auslander-Reiten sequences appear in the decomposition of the induced sequence. This result is related to the work of Knörr [6].

Notation is standard. All the kG-modules considered here are finite dimensional right modules. For kG-modules W and W', we use $(W, W')^G$ to denote $\operatorname{Hom}_{kG}(W, W')$. An element f of $(W, W')^G$ is said to be projective if there are a projective kG-module P and maps $\alpha \in (W, P)^G$ and $\beta \in (P, W')^G$ such that $f = \beta \circ \alpha$. We denote by $(W, W')^{1,G}$ the factor space of $(W, W')^G$ divided by the subspace consisting of projective homomorphisms. Note that $(W, W')^{1,G}$ is an $\operatorname{End}_{kG}(W')$ - $\operatorname{End}_{kG}(W)$ -bimodule. For any k-algebra R, we denote its radical by JR. Unless otherwise noted, \otimes means \otimes_{kN} .

The author wishes to express his hearty thanks to Dr. Okuyama, who suggested him the problem and notified him that the problem is related to the work of Knörr.

1. Decomposition of the induced sequence

Throughout this paper except Theorem 2.5, we deal with the situation in the Introduction. Let $E = \operatorname{End}_{kG}(V^{c})$ and $E_1 = \operatorname{End}_{kN}(V)$. Then E_1 can naturally be considered as a subalgebra of E by the injection $\iota: E_1 \to E$ defined