STOCHASTIC CALCULUS RELATED TO NON-SYMMETRIC DIRICHLET FORMS

Jai Heui KIM

(Received April 8, 1986)

0. Introduction

The theory of symmetric Dirichlet spaces and the probabilistic potential theory built on Hunt processes were unified by M. Fukushima [8], M.L. Silverstein [17] and others (see References in [8]). In particular, analysis based on additive functionals (AF's) and stochastic calculus related to symmetric Dirichlet spaces were developed by M. Fukushima [8], M. Fukushima and M. Takeda [9], S. Nakao [15] and M. Takeda [20]. On the other hand, the theory of non-symmetric Dirichlet spaces was studied by J. Bliedtner [3, 4], H. Kunita [10] etc.. Furthermore S. Carrillo Menendez [5] constructed the Hunt process associated with a non-symmetric Dirichlet space. Then many results in the symmetric case have been extended to the non-symmetric case by Y. Le Jan [11, 12], M.L. Silverstein [18], S. Carrillo Menendez [6] etc.. The purpose of this paper is to extend those results in [8], [9] and [20] to the non-symmetric case and thereby enlarge the range of applications of Dirichlet space theory.

1. Summary of the results

We first give a precise definition of non-symmetric Dirichlet form. Let X be a locally compact Hausdorff space with countable base and m a non-negative Radon measure on X such that supp[m]=X. $L^2(X, m)$ denotes the real L^2 -space with inner product

$$(u, v)_{L^2} = \int_X u(x) v(x) m(dx), \ u, v \in L^2(X, m).$$

Let **H** be a dense linear subspace of $L^2(X, m)$ which forms a Hilbert space with a norm $|| ||_{\mathbf{H}}$ such that for some K > 0, $||u||_{\mathbf{H}} \ge K ||u||_{L^2}$ for any $u \in \mathbf{H}$. Moreover we assume that if $u \in \mathbf{H}$, then $|u|, u \land 1 \in \mathbf{H}$. In this article we consider a bilinear form **a** on $\mathbf{H} \times \mathbf{H}$ which satisfies the following conditions;

(a.1) \mathbf{a}_{α} is coercive for any $\alpha > 0$, i.e., there exists a constant $K_1 = K_1(\alpha) > 0$ such that $\mathbf{a}_{\alpha}(u, u) \ge K_1 ||u||_H^2$ for every $u \in H$,