Asoh, T. Osaka J. Math. 24 (1987), 271–298

ON SMOOTH SL(2, C) ACTIONS ON 3-MANIFOLDS

Dedicated to Professor Masahiro Sugawara on his 60th birthday

TOHL ASOH

(Received January 27, 1986)

1. Introduction

Real analytic actions of the special linear group SL(n, F) on analytic manifolds M are classified by C.R. Schneider [6] in case that n=2, F=R and M is any closed surface, and by F. Uchida [7-8] in case that M is the *m*-sphere S^m with $5 \le n \le m \le 2n-2$ if F=R and $14 \le 2n \le m \le 4n-2$ if F=C.

In this paper we are concerned with smooth SL(2, C)-actions on closed 3manifolds M^3 . Note that SL(2, C) is simple and contains SU(2) as a maximal compact subgroup. Then we have the following (cf. [1; Th.1.3])

(1.1) If SL(2, C) acts non-trivially on M^3 , then so does SU(2) and M^3 is a quotient space of S^3 or $S^2 \times S^1$; S^3/Z_n or $(S^2 \times S^1)/Z_2$ (Z_n is a cyclic group of order n).

By this reason we are concerned mainly for the case $M^3 = S^3$, and we study the equivariant homeomorphism classes of such actions.

In case of transitive actions, we see the following

Theorem 1.2. There are real analytic SL(2, C)-actions ϕ_r on S^3 for $r \in R$, which are not equivariantly homeomorphic to each other, and any transitive SL(2, C)-action on S^3 is equivariantly diffeomorphic to some ϕ_r (see (4.1) for the definition of ϕ_r).

In case of non-transitive actions, the classification of SL(2, C)-action on S^3 can be reduced to that of pairs of a one-parameter transformation group on $S^1(\subset C)$ and a real valued smooth function on $S^1 - \{\pm 1\}$; and further to that of triads of subsets A and B_i (i=1, 2) of S^1 satisfying

(1.3) (A1) $A(\pm\phi)$ is a finite union of closed intervals, $A \cap J(A) = \phi$ and the components of A alternate with those of J(A), where J is the reflections on S^1 in the real line.

(A2) $B_i(i=1,2)$ are open in S^1 and $B_1 \cup B_2 \subset A - \partial A$.

Such triads (A, B_i) and (A', B'_i) are called A-equivalent if there is an orientation preserving homeomorphis Φ of S^1 onto itself such that $\Phi J=J\Phi$ and