Hiramine, Y., Matsumoto, M. and Oyama, T. Osaka J. Math. 24 (1987), 123-137

ON SOME EXTENSION OF I-SPREAD SETS

Dedicated to Professor Hirosi Nagao on his 60th birthday

YUTAKA HIRAMINE, MAKOTO MATSUMOTO AND TUYOSI OYAMA

(Received December 19, 1985)

1. Introduction

A set Σ of $q^2(2,2)$ -matrices over K=GF(q) is said to be a 1-spread set if it contains the zero matrix 0 and X-Y is nonsingular for any distinct X, $Y \in \Sigma$. Let Σ' be an arbitrary 1-spread set over K. Then $\Sigma' = \{\begin{pmatrix} x & y \\ g(x, y) & h(x, y) \end{pmatrix} | x, y \in K\}$ for suitable mappings g and h from $K \times K$ to K. Let $F=GF(q^2) \supset K$. If Char K, the characteristic of K, is odd, we can take an element $t \in F$ -K with $t^2 \in K$ and define a mapping f from F to itself in such a way that f(x+yt)=g(x, y)-h(x, y)t for $x, y \in K$. Then f satisfies the condition

(*) f(0)=0 and $(x-y)(f(x)-f(y)) \in K$ for any distinct $x, y \in F$. Furthermore the set of (2,2)-matrices

$$(**) \quad \Sigma_f = \{ \begin{pmatrix} x & y \\ f(y) & x^q \end{pmatrix} | x, y \in F \}$$

is a 1-spread set over F and the resulting translation plane of order q^4 with the kernel F, say π , has the following properties:

(A1) The linear translation complement $LC(\pi)$ has a shears group P of order at least q^2 .

(A2) $LC(\pi)$ has a Baer subgroup Q of order q+1 with $[P, Q] \neq 1$.

In this paper we study a class of translation planes of order q^4 with the properties (A1) and (A2) as above. Let $\Omega(F)$ be the set of mappings from F to itself satisfying (*). Then the set of (2,2)-matrices Σ_f defined by (**) is a 1-spread set for any $f \in \Omega(F)$ and if Char K is odd, a 1-spread set Σ'_f over K corresponding to f is naturally defined (Proposition 2.1). Denote by $\Pi(F)$ the set of planes π_f corresponding to Σ_f with $f \in \Omega(F)$. Then $\Pi(F)$ is characterized as the set of translation planes with the kernel F having the properties (A1) and (A2).

The translation complements of these planes are solvable when p>2. To show this we need a result on shears groups (Theorem 3.1). Any of these