Kado, J. Osaka J. Math. 24 (1987), 83-94

PSEUDO-RANK FUNCTIONS ON SKEW GROUP RINGS AND ON FIXED SUBRINGS OF AUTOMORPHISMS OF UNIT-REGULAR RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

JIRO KADO

(Received October 28, 1985)

Let R be a unit-regular ring and G a finite subgroup of Aut(R) with $|G|^{-1} \in R$. This paper is concerned with relationships between the pseudo-rank functions of the skew group ring R*G and ones of the fixed subring R^c . We introduce such relationships by studying certain homomorphisms between $K_0(R*G)$ and $K_0(R^c)$.

In §1, under the assumption that R*G is a unit-regular ring and R is a finitely generated projective left R^{G} -module, we shall investigate the following two homomorphisms:

$$\overline{\mu} \colon K_0(\mathbb{R}^G) \to K_0(\mathbb{R}^*G)$$
, defined by $\overline{\mu}([M]) = [\mathbb{R}^*Ge \otimes_{\mathbb{R}^G} M]$

 $\lambda \colon K_0(R^*G) \to K_0(R^G)$, defined by $\lambda([A]) = [\operatorname{Hom}_{R^*G}(R^*Ge, A)]$,

where $e = |G|^{-1} \sum_{g \in G} g$ in R * G. Then we shall show that $\overline{\lambda} \overline{\mu}$ is the identity map and $\overline{\mu}$ is an order-embedding map.

The maps $\overline{\mu}$, $\overline{\lambda}$ induce maps μ^* , λ^* between $P(R^*G)$ and $P(R^G)$, where P(T) (resp. $\partial_e P(T)$) is the family of all pseudo-rank functions (resp. extremal pseudo-rank functions) of a regular ring T. For any $N \in P(R^*G)$ with N(e) > 0 and any $a \in \mathbb{R}^6$, we define

$$\mu^*(N)(a) = N(e)^{-1} D_N(R * Ge \otimes_{R^G} R^G a),$$

where D_N is the dimension function which corresponds to N. For any $Q \in P(\mathbb{R}^c)$ and any $x \in \mathbb{R} * G$, we define

$$\lambda^*(Q)(x) = D_Q({}_R eR)^{-1} D_Q(\operatorname{Hom}_{R*G}(R*Ge, R*Gx)),$$

where D_Q is the dimension function which corresponds to Q. Then we shall show that $\mu^*(N)$ (resp. $\lambda^*(Q)$) is a pseudo-rank function of R^G (resp. R^*G) and $\mu^*\lambda^*$ =identity and μ^* preserves extremal pseudo-rank functions.

In §2, for a directly finite, left self-injective, regular ring R and an X-