HYPOELLIPTICITY FOR INFINITELY DEGENERATE ELLIPTIC OPERATORS

YOSHINORI MORIMOTO

(Received September 18, 1985)

Introduction. In the recent paper [5] Kusuoka-Strook gave a sufficient condition of hypoellipticity for degenerate elliptic operators of second order, as an application of the Malliavin calculus (see Theorem 8.13 of [5], cf. [4]). Their method is applicable even to infinitely degenerate elliptic operators which do not satisfy the famous sufficient condition given by Hörmander [2]. One of remarkable results by means of their condition is as follows: Let L be a differential operator of the form $\partial_{x_1}^2 + \partial_{x_2}^2 + \sigma(x_1)^2 \partial_y^2$ in \mathbb{R}^3 , where $\sigma \in \mathbb{C}^{\infty}$, $\sigma(0)=0$, $\sigma(x_1)>0$ ($x_1 \pm 0$), $\sigma(x_1)=\sigma(-x_1)$ and σ is non-decreasing in $[0, \infty)$. Then L is hypoelliptic in \mathbb{R}^3 if σ satisfies

(*)
$$\lim_{x_1 \neq 0} |x_1 \log \sigma(x_1)| = 0$$
 (Theorem 8.41 of [5]).

The condition (*) allows the infinite degeneracy of σ at $x_1=0$. For example, if $\sigma(x_1)=\exp(-1/|x_1|^{\delta})$ for $\delta>0$ the condition (*) means $\delta<1$. The main purpose of the present paper is to show the sufficiency of the condition (*) by using the theory of pseudodifferential operators. In [5] it is proved that the condition (*) is necessary for L to be hypoelliptic. The author [7] has given a simple proof of the necessity of (*) without using the Malliavin calculus. The arguments in [7] apply to degenerate elliptic operators of higher order (see Theorem 3 of [7]).

As to the operator L we remark that an operator $\partial_{x_1}^2 + \sigma(x_1)^2 \partial_y^2 (=L - \partial_{x_2}^2)$ is hypoelliptic in $R_{x_1,y}^2$ without the condition (*). This result is due to Fedii [1] (cf. [6]), who studied the criterion of hypoellipticity by means of apriori estimates. Such criteria have been investigated by Treves [9] and Oleinik-Radkevich [8]. Our proof of the hypoellipticity of L will be done by improving criteria studied by [8] and [1].

To explain the idea of the present paper we consider a simple case $\sigma(x_1) = \exp(-1/|x_1|^{\delta})$, $\delta > 0$. Then *L* degenerates infinitely at $x_1 = 0$, and hence Hörmander's sufficient condition does not apply to *L*. In the proof of hypoellipticity by means of apriori estimates, the technical difficulty comes from the fact that for any $\kappa > 0$ subelliptic estimate