Illman S. Osaka J. Math. 23 (1986), 881-927

ACTIONS OF COMPACT LIE GROUPS AND THE EQUIVARIANT WHITEHEAD GROUP

SÖREN ILLMAN

(Received August 20, 1985)

1. Introduction. Let G be a compact Lie group and X a finite G-CW complex. By $Wh_G(X)$ we denote the equivariant Whitehead group of X as defined in [5]. The group $Wh_G(X)$ is defined in a geometric way and $Wh_G(X)$ is an abelian group. If $f: X \to Y$ is a G-homotopy equivalence between finite G-CW complexes then the (geometric) equivariant Whitehead torsion of f is an element $\tau(f) \in Wh_G(X)$ and f is a simple G-homotopy equivalence if and only if $\tau(f)=0$, see Theorem II.3.6' in [5].

Let us here first state the two main results of this paper and then describe some earlier work on the subject, and also give a quick outline of some other results and constructions contained in this paper which are of independent interest. The first main result has to do with the algebraic determination of $Wh_{c}(X)$.

Theorem A. There exists an isomorphism

$$\Phi\colon Wh_G(X) \xrightarrow{\cong} \sum_{\mathcal{C}(X)} \oplus Wh(\pi_0(WH)^*_{\alpha}).$$

In the above formula the right hand side is a direct sum of ordinary (algebraically) defined Whitehead groups of discrete groups $\pi_0(WH)^*_{\sigma}$ which will be defined below. The direct sum is over the set $\mathcal{C}(X)$ of equivalence classes of connected components X^H_{σ} of arbitrary fixed point sets X^H , where H is any closed subgroup of G. The components X^H_{σ} and X^K_{β} of the fixed point sets X^H and X^K , respectively, are defined to be in relation, denoted

 $X^{H}_{a} \sim X^{K}_{\beta}$

if there exists $n \in G$ such that $nHn^{-1} = K$ and $n(X_{\alpha}^{H}) = X_{\beta}^{K}$. Given a component X_{α}^{H} of X^{H} we define

$$(WH)_{\alpha} = \{w \in WH \mid wX^{H} = X^{H}\}.$$

Here WH = NH/H, and NH denotes the normalizer of H in G. The group $(WH)^*_{\sigma}$ is a Lie group (not necessarily compact) which acts on the universal