Morisugi, K. Osaka J. Math. 23 (1986), 867-880

HOMOTOPY GROUPS OF SYMPLECTIC GROUPS AND THE QUATERNIONIC JAMES NUMBERS

KAORU MORISUGI

(Received September 13, 1985)

0. Introduction

Let Sp(m) $(0 \le m \le \infty)$ be the *m*-th symplectic group. For convenience we denote $Sp(\infty)$ by Sp. Our purpose is to determine the homotopy groups of $Sp(m), \pi_i(Sp(m))$. If i < 4m+2 then $\pi_i(Sp(m))$ is isomorphic to $\pi_i(Sp)$. And $\pi_i(Sp)$ is well-known by Bott periodicity. Suppose $i \ge 4m+2$, then it is not difficult to see that if i=0, 1, 3 or 7 mod 8 then $\pi_i(Sp(m))$ is isomorphic to $\pi_{i+1}(Sp/Sp(m))$ and if i=4 or 5 mod 8 then $\pi_i(Sp(m))$ is isomorphic to $\pi_{i+1}(Sp/Sp(m)) + Z/2$, (direct sum), where Sp/Sp(m) is the factor space of Sp by the subgroup Sp(m). Thus if $i \neq 2 \mod 4$ then the calculation of π_i (Sp(m)) can be reduced to that of $\pi_{i+1}(Sp/Sp(m))$. In the meta-stable range of $i, 4m+2 \leq i$ $\leq 8m+4, \pi_i(Sp/Sp(m))$ is isomorphic to $\pi_i^s(Q_{n,n-m})$ for sufficiently large *n*, where $Q_{n,n-m}$ is the stunted quaternionic quasi-projective space [8]. And when the value of *i*-4*m* is small we can calculate the group $\pi_i^s(Q_{n,n-m})$ (see [15]). On the other hand in the case that $i=2 \mod 4$, even if we know the group $\pi_{i+1}(Sp/Sp(m))$ this is not sufficient to determine $\pi_i(Sp(m))$. Let i=4n-2. There are two steps in the computation of $\pi_{4n-2}(Sp(m))$; one is to determine the quaternionic James number and the other to solve a certain group extension problem. Let us explain these. Let $X_{n,k}$ be the quaternionic Stiefel manifold of all symplectic k-frames in H^{n} (n-dimensional vector space over the quaternions H) and let $p: X_{n,k} \rightarrow S^{4n-1}$ be the bundle projection which associates with each frame its last vector. Then the quaternionic James number $X\{n, k\}$ is defined as the index of $p_{*\pi_{4n-1}}(X_{n,k})$. Thus $X\{n, 1\} = 1, X\{n, l\}$ divides $X\{n, k\}$ if l < k and, by the classical work of Bott [3], $X\{n, n\} = a(n-1) \cdot (2n-1)!$, where a(i) = 2 if i is odd and =1 if *i* is even. It is well-known that $X_{n,k}$ is homeomorphic to Sp(n)/Sp(n-k). Let $d(n,m) = X\{n,n\}/X\{n,n-m\}$. Then there exists a short exact sequence (*):

$$0 \to \operatorname{Tor}(\pi_{4n-1}(X_{n,n-m})) \xrightarrow{\Delta} \pi_{4n-2}(Sp(m)) \xrightarrow{i_*} Z/d(n,m) \to 0,$$

where Δ is the restriction to $\operatorname{Tor}(\pi_{4n-1}(X_{n,n-m}))$ (the torsion subgroup of $\pi_{4n-1}(X_{n,n-m})$) of the boundary homomorphism $\Delta': \pi_{4n-1}(X_{n,n-m}) \to \pi_{4n-2}(Sp(m))$ asso-