Nobusawa, N. Osaka J. Math. 23 (1986), 853-858

JORDAN-HÖLDER THEOREM FOR PSEUDO-SYMMETRIC SETS

NOBUO NOBUSAWA

(Received September 11, 1985)

1. Introduction

A pseudo-symmetric set is a pair (U, σ) where U is a set and σ is a mapping of U into the group of permutations on U such that $\sigma(u)$ fixes u for every element u in U and that it satisfies a fundamental identity: $\sigma(u^{\sigma(v)}) = \sigma(v)^{-1} \sigma(u) \sigma(v)$ for u and v in U.

In [1], a possibility of developing a structure theory of pseudo-symmetric set is indicated. In this paper, we shall establish an analogue of Jordan-Hölder theorem in group theory for pseudo-symmetric sets.

Contrary to group theory, the concept of kernels of homomorphisms is not available. Instead, a concept of a normal decomposition is introduced in [1]. It is a partition of U such that each class of the partition consists of elements that are mapped to an element by a given homomorphism. When a partition Ais a refinement of a partition B, we denote $A \leq B$. The partition of U which has just one class U itself is denoted by U. The complete partition of U whose classes are one-point sets is denoted by E. So, $E \leq A \leq U$ for every partition A. Suppose we have a sequence of normal decompositions P_i such that

$$(1) \qquad \qquad U = P_0 > P_1 > P_2 > \cdots > P_n = E$$

where there is no normal decomposition between P_i and P_{i+1} . Suppose we have another sequence of normal decompositions Q_i of the same properties:

(2)
$$U = Q_0 > Q_1 > Q_2 > \cdots > Q_m = E.$$

We say that P_i/P_{i+1} is non-trivial if $H(P_i/P_{i+1}) \neq 1$, where $H(P_i/P_{i+1})$ is the group of displacements for P_i/P_{i+1} . (The definition will be given in 3.) The main theorem we obtain is that between the set of non-trivial P_i/P_{i+1} and that of non-trivial Q_j/Q_{j+1} there is a one to one correspondence such that if P_i/P_{i+1} corresponds to Q_j/Q_{j+1} then $H(P_i/P_{i+1}) \cong H(Q_j/Q_{j+1})$.

2. Partitions of a set

Let U be a (universal) set, and $U = \bigcup A_i$ a partition of U into non-empty