Asaba, T. Osaka J. Math. 23 (1986), 815–821

ASYMPTOTIC DIRICHLET PROBLEM FOR A COMPLEX MONGE-AMPÈRE OPERATOR

TAKASHI ASABA

(Received April 25, 1985)

1. Introduction

Let M be a complex manifold of dimension n and P(M) denote the set of plurisubharmonic functions on M. For $u \in P(M) \cap C^2(M)$, we write $(dd^c u)^k$ for $dd^c u \wedge dd^c u \wedge \cdots dd^c u$ where $d^c = \sqrt{-1}(\overline{\partial} - \partial)$. In the case k = n, the operator

k times

 $u \rightarrow (dd^c u)^n$ is called a complex Monge-Ampére operator. In general, let u be a locally bounded plurisubharmonic function on M. In [5], [6], Bedford and Taylor defined a positive (k, k) current $(dd^c u)^k$ inductively by

$$\int \psi \wedge (dd^c u)^k = \int u \cdot dd^c \psi \wedge (dd^c u)^{k-1}$$

for any smooth (n-k, n-k) form ψ with compact support on M. In the same paper they studied the Dirichlet problem for the complex Monge-Ampére operator on strongly pseudoconvex bounded domains in C^n .

In this paper we shall consider the Dirichlet problem at *infinity* on certain negatively curved Kähler manifolds. Before stating our main theorem, we recall some definitions in [10]: Let M be a simply connected complete Riemannian manifold of nonpositive curvature. Two geodesic rays γ_1 , γ_2 parametrized by arc length are called *asymptotic* if the distance $d(\gamma_1(t), \gamma_2(t))$ is bounded for $t \ge 0$. The equivalence classes of geodesic rays are called *asymptotic classes*, the set of which will be denoted by $M(\infty)$. Then $\overline{M} = M \cup M(\infty)$ equipped with the "cone topology" is a compact topological space homeomorphic to a cell.

Theorem. Let M be a simply connected complete Kähler manifold whose sectional curvature K satisfies

$$(1) \qquad -a^2 \leq K \leq -1 \qquad (a \geq 1).$$

We denote by ω the Kähler form on M and by r(x) the distance function relative to a fixed point $o \in M$. Then for any continuous function f on $M(\infty)$ and for any