Okuyama, T. Osaka J. Math. 23 (1986), 467-469

p-RADICAL GROUPS ARE p-SOLVABLE

Dedicated to Professor Hirosi Nagao for his 60th birthday

Tetsuro OKUYAMA

(Received January 24, 1985)

Let k be an algebraically closed field of characteristic p>0. Let G be a finite group with Sylow p-subgroup P. Following Motose and Ninomiya [3] we call G p-radical if k_p^{c} is completely reducible, where k_p is the trivial kP-module. Our aim in this paper is to prove the following theorems.

Theorem 1. If G is p-radical, then G is p-solvable.

Theorem 2. Let G be a p-radical group with Sylow p-subgroup P. Then the following hold;

(1) If $D=P \cap P^x$ for some x in G, then D is a vertex of some simple kG-module.

(2) If $D=P \cap P^x$ for some x in $C_G(D)$, then D is a defect group of some pblock of G.

We will write V | W if a kG-module V is isomorphic to a direct summand of a kG-module W. For kG-modules V and W and a subgroup H of G, let $(V, W)^{c} = \operatorname{Hom}_{kG}(V, W)$ and $(V, W)^{c}_{H} = T_{H,G}(V, W)^{H}$, where $T_{H,G}$ is the trace map from $(V, W)^{H}$ to $(V, W)^{c}$.

1. Preliminaries

Throughout this paper we let G be a p-radical group with Sylow p-subgroup P and put $Y=k_P^G$. In this section we shall prove two lemmas which will be used to prove the theorems stated in the introduction.

Lemma 1. If S is a simple kG-module with vertex Q, then every indecomposable direct summand of S_P is isomorphic to k_A^P for some $A \subset P$ which is conjugate to Q.

Proof. Since Y is completely reducible, $(Y, S)^G = (Y, S)^G_Q$ and $(Y, S)^G_R = 0$ if R does not contain any conjugate of Q. Let X be an indecomposable direct summand of S_P . Then by Mackey decomposition theorem $X \simeq k_A^P$ for some $A \subset P$ such that A is contained in some conjugate of Q. By the isomorphism