Zöllner, A. Osaka J. Math. 23 (1986), 457–459

ON MODULES THAT COMPLEMENT DIRECT SUMMANDS

ANDREAS ZÖLLNER

(Received October 5, 1984)

A module M is said to complement direct summands if every direct summand of M has the exchange property with respect to completely indecomposable modules, or in other words if for each direct summand B of M and for each decomposition $M = \bigoplus_{I} A_{i}$, where every A_{i} is completely indecomposable (i.e. has local endomorphism ring), there exists a subset K of I with $M = B \oplus \bigoplus_{r} A_{k}$.

There are several characterisations by a theorem of Harada [3, 3.1.2].

Theorem. Let $M = \bigoplus_{i} A_i$ be a c. indec. decomposition. Equivalent are

- (1) M satisfies the take-out property.
- (2) Every direct summand of M has the exchange property in M.
- (3) M complements direct summands.
- (4) $(A_i: I)$ is a locally-semi-T-nilpotent family.
- (5) $J' \cap End(M)$ is equal to the Jacobson radical of End(M).

One step of the proof, "(4) \Rightarrow (5)", does merit a certain attention. In an earlier version of the theorem by Harada and Sai [2, Thm 9], the proof of that step uses assumptions stronger than at hand [2, Lemma 12]. We would like to present an alternative and elementary proof of that step. In particular one does not need transfinite induction as in [3, Lemma 2.2.3]. All notation may be found in [3]. For the proofs let perpetually be $M = \bigoplus_{I} A_{i}$ a completely indec. decomposition and let $(e_{i}: I)$ be a related set of orthogonal idempotents (i.e. $e_{i}(M) = A_{i}$).

By definition, for an element f of $\operatorname{End}(M)$ not contained in J', there exist some elements $i, j \in I$ and $g \in \operatorname{End}(M)$ with $ge_j fe_i = e_i$. Thus the Jacobson radical of $\operatorname{End}(M)$ is always contained in $J' \cap \operatorname{End}(M)$, otherwise it would contain a nonzero idempotent.

Lemma 1. For all $t \in J' \cap End(M)$ and for all $i \in I$, $e_i t$ and te_i are elements of the Jacobson radical.