Hashimoto, S. Osaka J. Math. 23 (1986), 307-312

A NOTE ON SOME PERIODICITY OF Ad-COHOMOLOGY GROUPS OF LENS SPACES

SHIN HASHIMOTO

(Received February 12, 1985)

1. Introduction

Let p be an odd prime and $q=p^r$. We choose a positive integer k such that the class of k in \mathbb{Z}/p^2 generates the group of units $(\mathbb{Z}/p^2)^{\times}$.

Let K^* be the K-cohomology theory and $K^*_{(p)}$ its p-localized theory. The Adams operation ψ^k on K induces a stable operation ψ^k on $K^*_{(p)}$. We denote by $K_{(p)}$ the spectrum which represents the $K^*_{(p)}$ -cohomology theory. Since stable operations induce maps of spectra, we have the following cofibration of spectra

$$K_{(p)} \xrightarrow{1-\psi^k} K_{(p)} \longrightarrow C_{1-\psi^k}.$$

We define a spectrum Ad as $\Sigma^{-1}C_{1-\psi^k}$ and its associated cohomology theory Ad^* . When k is a prime power, the associated connective theory of Ad^* coincides with the cohomology theory defined by Seymour [9] and Quillen [8].

Let *m* and *n* be positive integers. We identify \mathbb{Z}/m with the set of *m*-th root of 1 in *C*, and S^{2n+1} with the unit sphere in C^{n+1} . The complex vector space structure on C^{n+1} induces a \mathbb{Z}/m -action on S^{2n+1} and we define the standard Lens space mod *m* as $S^{2n+1}(\mathbb{Z}/m)$. As is well known, the standard Lens space $L^n(m)$ has a *CW*-complex structure

$$L^n(m) = \bigcup_{i=1}^{2n+1} e^i$$

and we denote its 2*n*-skeleton by $L_0^n(m)$. Since the canonical inclusion $C^{n+1} \subset C^{n+2}$ induces a cellular inclusion $L^n(m) \subset L^{n+1}(m)$, we have a *CW*-complex $L^{\infty}(m) = \operatorname{colim} L^n(m)$. This space $L^{\infty}(m)$ is a classifying space $B\mathbb{Z}/m$ of \mathbb{Z}/m . We consider the case $m = p^r$. Main results are the following.

Theorem 1.1. Let M(n) = r + [(n-1)/(p-1)]. For any integers *i*, *j* satisfying $i-j\equiv 0 \pmod{(p-1)p^{M(n)-1}}$, there holds the following isomorphisms.

$$\begin{aligned} Ad^{2i}(L_0^n(p^r)) &\simeq Ad^{2j}(L_0^n(p^r)) \\ \widetilde{A}d^{2i+1}(L_0^n(p^r)) &\simeq \widetilde{A}d^{2j+1}(L_0^n(p^r)) \,. \end{aligned}$$