Kawai, O. and Miyanishi, M. Osaka J. Math. 23 (1986), 207-215

SPECIALIZATIONS OF COFINITE SUBALGEBRAS OF A POLYNOMIAL RING

Dedicated to Professor Hirosi Nagao on his sixtieth birthday

OSAMU KAWAI AND MASAYOSHI MIYANISHI

(Received December 14, 1984)

1. Introduction. Let K be a field of characteristic zero and let R_{κ} := K[x, y] be a polynomial ring in two variables over K. A normal K-subalgebra A of R_{κ} is said to be *cofinite* if R_{κ} is a finite A-module with the canonical A-module structure. In the case where K is an algebraically closed field, we know the following results:

(1) If A is regular, A is then a polynomial ring in two variables over K; see [3] and [8].

(2) If A is singular, then there exist a polynomial subalgebra R'_{κ} and a finite group G of linear K-automorphisms of R'_{κ} such that $A = (R'_{\kappa})^{G}$ and G is a small subgroup of GL(2, K); see [4] and [10].

In the present article, we shall show that the structures of normal cofinite subalgebras A of R_{κ} are invariant under specializations, provided the quotient field extension $Q(R_{\kappa})/Q(A)$ is a quasi-Galois extension; see Definition 2.2. Our problem is formulated as follows: Let $\mathfrak{D}=k[[t]]$ be a formal power series ring in one variable over an algebraically closed field of characteristic zero and let $R:=\mathfrak{D}[x, y]$ be a polynomial ring in two variables over \mathfrak{D} . Let A be an \mathfrak{D} -subalgebra of R. We say that A is *cofinite* if R is a finite A-module and that A is geometrically \mathfrak{D} -normal if $A_{\kappa}:=A \otimes K$ and $A_{k}:=A/tA$ are normal domains, where K is the quotient field $Q(\mathfrak{D})$ of \mathfrak{D} . If A is a cofinite, geometrically \mathfrak{D} -normal subalgebra of R, then A_{κ} and A_{k} are cofinite normal subalgebras in R_{κ} and R_{k} , respectively. Let \overline{K} be an algebraic closure of K. We ask whether or not certain properties of a cofinite normal subalgebra $A_{\overline{K}}$ of $R_{\overline{K}}$ are in-

Conjecture 1. Let \mathbb{D} and R be as above, and let A be a cofinite, geometrically \mathbb{D} -normal subalgebra of R. Then there exist a cofinite \mathbb{D} -subalgebra R' of R and a finite group G of \mathbb{D} -automorphisms of R' such that:

herited by the cofinite normal subalgebra A_k of R_k . We pose the following

(i) R' is a polynomial ring in two variables over \mathfrak{O} and contains A as an \mathfrak{O} -subalgebra;