A TRIPLING ON THE ALGEBRAIC NUMBER FIELD

Dedicated to Professor Nagayoshi Iwahori on his 60th birthday

YASUMASA AKAGAWA

(Received February 3, 1983) (Revised March 7, 1985)

Throughout this paper we fix an (even or odd) prime number $l, n = l^{\nu}$ a power of *l*, and an algebraic number field *k* which contains $\exp(2\pi i/n)$ and has a finite degree over the rational number field **Q**. For elements x, $y \in k^*$ and a prime spot p in *k* (abbrev. *k*-prime), Hilbert's *n*-th power residue symbol $\left(\frac{x}{y}\right)^{x}$ is defined by $\sqrt[x]{y}^{\sigma} = \left(\frac{x}{y}\right)^{x} \cdot \sqrt[x]{y}$ using norm residue symbol *p In \ p In* $\sigma = \left(\frac{x, R(x, y)}{h}\right)$, which takes the value in the group of the *n*-th roots of 1 in *k, W.* We denote the completion of *k* at *p* by *k^p* and the group of the *n-th* roots of 1 in $k_{\rm p}$ by $W_{\rm p}$. After the canonical inclusions of fields $k \subset k_{\rm p}$ and of Galois groups $G(k_\mathfrak{p}(\sqrt[x]{y})/k_\mathfrak{p})\!\subset\! G(k(\sqrt[x]{y})/k)$, the (global) Hilbert's power residue symbol is extended to the local symbol $(x, y|k_{\mathfrak{p}})$, taking the value in $W_{\mathfrak{p}}$. We put

 $(x, y)_n = \prod_{\text{all }k\text{-prime }p} (x, y|k_p)_n$

which is a pairing on k^* taking the value in the group $\prod_{\mathfrak{p}} W_{\mathfrak{p}}$. Then this pairing symbol admits fundamental properties like the multiplicativity about each com ponent, the conjugacy theorem about isomorphism *τ:k->k^r >* and the transgre ssion theorem about the lifting of *k* to some extension *k'/k.* Moreover it has the norm theorem saying that x is in the norm group $N_{K/k}K^*$; $K=k(x/y)$, if and only if $(x, y)_n = 1$ and further it has the reciprocity law saying that $(x, y)_n = 1$ $(y, x)^{-1}_{n}$.

In this paper we define a tripling symbol $(x, y, z)_n \in W$ on k^x . Not that it is defined for all the elements of $k^* \times k^* \times k^*$, but it is done only for the ones having a property named *strictly orthogonal.* The definition of strict ortho gonality is rather complicated but we shall illustrate here some sufficient condi tions for it. In case $l+2$, $\{x, y, z\}$ are strictly orthogonal if they are all *n*-th powers in k_t^{\times} at any $I|(l)$ under inclusion $k\subset k_t$ and any two of them are ortho gonal about the symbol $($, $)_{n}$. In case $l=2$ we need some additional conditions; saying when exp(2πi/4n)∈k, {x, y, z} are strictly orthogonal if further any two of them are orthogonal about $($, $)_{2n}$. Our results of this paper [are the