ON THE CONTINUITY OF PLURISUBHARMONIC FUNCTIONS ALONG CONFORMAL DIFFUSIONS

MASATOSHI FUKUSHIMA

(Received November 8, 1984)

1. Introduction

A stochastic process $Z_t = (Z_t^1, \dots, Z_t^n)$ taking values in C^n is called a *con*formal martingale if Z_t^{α} and $Z_t^{\alpha} Z_t^{\beta}$, $1 \leq \alpha$, $\beta \leq n$, are continuous local martingales. When Z_t is defined only on a time interval $[0, \eta)$ for some predictable stopping time η , Z_t is said to be a conformal martingale if so is the stopped process $Z_{t \wedge \eta'}$ for any stopping time η' strictly less than η .

Let M be a complex manifold of complex dimension n. By a diffusion process $D = (Z_t, P_z)$ on M, we mean a strong Markov process on M with continuous sample paths defined on $[0, \zeta)$, ζ being the life time. In this paper, we assume without specific mention that the diffusion D admits no killing inside M in the sense that $P_z(\tau_U < \zeta < +\infty) = P_z(\zeta < +\infty)$, $z \in U$, for any relatively compact open set $U \subset M$, where τ_U denotes the first exit time from $U: \tau_U =$ inf $\{t \ge 0: Z_t \in U\}$. We see then that, for any open set $U \subset M$, τ_U is a predictable stopping time with respect to P_z for $z \in U$.

We call a diffusion process $D = (Z_t, P_z)$ on M a conformal diffusion on Mif, for any holomorphic coordinate neighbourhood (U, ϕ) , the C^n -valued process $\phi(Z_t)$ defined on $[0, \tau_U)$ is a conformal martingale with respect to P_z for each $z \in U$. We occasionally assume that the transition function p_t of D is absolutely continuous with respect to a volume element V on M:

 $(1.1) p_t(z, \cdot) < V, z \in M.$

We aim at proving the following theorem.

Theorem. Let $D = (Z_t, P_z)$ be a conformal diffusion on M satisfying the condition (1.1). Then, for any plurisubharmonic function u on M, $P_z(u(Z_t))$ is continuous in $t \in [0, \zeta)$ and finite for $t \in (0, \zeta) = 1, z \in M$.

This is a generalization of a theorem of Doob [2] to the cases of higher complex dimension and our proof is also similar to the one given in [2] in the sense that we utilize the quasi-continuity of plurisubharmonic functions with respect to a specific capacity related to the extremal function.