Masuda, M. and Tsai, Y. Osaka J. Math. 22 (1985), 907-919

TANGENTIAL REPRESENTATIONS OF CYCLIC GROUP ACTIONS ON HOMOTOPY COMPLEX PROJECTIVE SPACES

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

MIKIYA MASUDA¹⁾ AND YUH-DONG TSAI

(Received November 26, 1984)

0. Introduction

Let G be a cyclic group of an odd prime order m and let t be a generator of the complex representation ring R(G) of G; i.e. $R(G)=Z[t]/(1-t^m)$. Let X be a closed G manifold homotopy equivalent to $P(C^n)$ the space consisting of complex lines in C^n . Suppose G acts smoothly on X with isolated fixed points $\{p_i\}_{i=1}^n$ (Bredon's theorem asserts the number of fixed points equals n [2]). Then the tangential representation $T_{p_i}X$ of G at p_i defines a function $\psi_i(t)$ on G-1 (up to multiplication by t^k) for each i; see p. 137 in [12]. In particular, if X is G homotopy equivalent to P(A) for some complex representation A of G (we call such X a G homotopy P(A)), then it has an expression

$$\psi_i(t) = \lambda_{-1}(T_{p_i} P(A)) / \lambda_{-1}(T_{p_i} X)$$

where $\lambda_{-1}(V)$ is the Euler class of a G representation V. Therefore one can regard $\psi_i(t)$ as quantities which describe to what extent the action resembles a linear action on $P(C^n)$.

Petrie's conjecture in [12] suggests that $\psi_i(t)$ is independent of *i* for an S^1 manifold homotopy equivalent to $P(C^n)$ and the Pontrjagin classes are preserved under the homotopy equivalence. Particularly, in [13] Petrie showed that if X is S^1 homotopy equivalent to P(A) for some complex representation A of S^1 , then $\psi_i(t) = \pm 1$ for each *i*. In contrast to S^1 actions we construct infinitely many families of G homotopy $P(C^{2d})$ such that $\psi_i(t) = \pm \psi_j(t)$ for $i \neq j$. Here is a brief statement of our main theorem (Theorem 4.1).

Main Theorem. Let *m* be an odd prime number and 2d | m-1 for some integer $d \ge 2$. Then there are infinitely many homotopy complex projective spaces \mathbf{P}^{2d-1} of dimension 4d-2 such that Z_m acts on \mathbf{P}^{2d-1} with 2d isolated fixed points.

¹⁾ Partially supported by the Sakkokai Foundation and Yukawa Foundation.